期刊文献+

一类变系数非线性扩散方程的直接间断有限元分析 被引量:1

The Finite Element Analysis of a Class of Variable Coefficient Diffusion Equation
下载PDF
导出
摘要 为了解决非线性扩散方程的数值解能达到高精度问题,利用中心差分/直接间断方法建立了该方程的全离散数值格式.而后详细分析了全离散格式的收敛性,结果表明在L2范数下最佳结果为O(Δt3+Δth2+h2). In order to solve the problem of high precision for solving the numerical solution of the nonlinear diffusion equation,the total discrete numerical scheme of the equation is established by using the central difference/direct discontinuous method.Then,the convergence of the fully discrete scheme is analyzed in detail.The results show that the best result is O(Δt3+Δth2+h2)at the L2 norm.
作者 陈亚飞 郑云英 CHEN Ya-fei;ZHENG Yun-ying(School of Mathematical Science, Huaibei Normal University, Huaibei Anhui 235000, China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2020年第2期154-157,共4页 Journal of Jiamusi University:Natural Science Edition
基金 安徽省高校自然科学研究重点项目(KJ2018A0385)。
关键词 扩散方程 全离散 直接间断有限元方法 误差估计 diffusion equation full discretization direct discontinuous finite element method error estimate
  • 相关文献

参考文献1

二级参考文献13

  • 1张晓丹,段雅丽.PC-MG方法解反应-扩散方程组[J].高等学校计算数学学报,2005,27(S1):270-275. 被引量:5
  • 2Lang J and Walter A. A finite element method adaptive in space and time for nonlinear reaction-diffusion systems. IMPACT Comput. Sci. Engrg.. 1992, 4:269-314.
  • 3Zhang R, Yu X, Zhu J and Loula A F D. Direct discontinuous Galerkin method for nonlinear reaction-diffusion systems in pattern formation. Appl. Math. Mod., 2014 38:1612-1621.
  • 4Cockburn B and Shu, C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework, Math. Comp.,1989,52:411- 435.
  • 5Qiu J x, Khoo B C and Shu C W. A numerical study for the performance of the Runge- Kutta discontinuous Galerkin method based on different numerical fluxes. J. Comput. Phys., 2006,212: 540-565.
  • 6Shu C W, Different formulations of the discontinuous galerkin method for the viscous terms. Advances in Scientific Computing, Z.-C. Shi, M.Mu,W. Xue and J. Zou, eds., Science Press, China, 2001: 144-155.
  • 7Cockburn B and Shu C W, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 1998, 35: 2440-2463.
  • 8Baumann C E and Oden J T, A discontinuous hp finite element method for convection diffusion problems, Comput. Methods Appl. Mech. Engrg., 1999, 175: 311-341.
  • 9Liu H, Yan J, The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal., 2009,47 : 675-698.
  • 10G. Gassner, F. L6rcher and C. A. Munz. A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys., 2007,224: 1049-1063.

共引文献3

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部