期刊文献+

独立与相依情形下加权广义线性模型选择的重对数律和强一致性

The Law of Iterated Logarithm and Strong Consistency for the Selection of Weighted Generalized Linear Models in Independent and Dependent Cases
下载PDF
导出
摘要 在温和条件下,考虑相依响应情形(ρ-混合或m-相依),针对一般广义线性模型(GLM)任意改变其参数权重构造出加权GLM,给出了参数的最大似然估计(MLE),并推导了加权后模型的重对数律(LIL)。应用独立情形下强极限理论证明了任意修正模型与全模型的对数似然之差的渐近结果。借助惩罚加权对数似然函数技术,基于相依LIL证明了模型选择准则的强一致性,并推导出若惩罚项的阶数介于O(log log n)与O(n)之间时,则该准则选取最简单修正模型几乎是必然的。 Under mild conditions,considering the dependent response situation(ρ-mixing or m-dependent),a weighted GLM is constructed for the general generalized linear model(GLM)by arbitrarily changing its parameter weights.The maximum likelihood estimation(MLE)of the parameters is given.The law of logarithm(LIL)of the weighted model is derived.The asymptotic result of the difference between the log-likelihood of the arbitrarily modified model and the full model is proved by the strong limit theory in the independent case.With the help of penalty weighted log-likelihood function technology,the strong consistency of the model selection criteria is proved based on the dependent LIL,and if the order of the penalty term is between O(log log n)and O(n),It is almost inevitable that the criterion chooses the simplest modification model.
作者 杨晓伟 赵开斌 刘相国 王冬银 YANG Xiao-wei;ZHAO Kai-bin;LIU Xiang-guo;WANG Dong-yin(College of Mathematics and Statistics,Chaohu University,Hefei 238000,China)
出处 《宜春学院学报》 2020年第3期40-49,共10页 Journal of Yichun University
基金 安徽省高校优秀青年人才支持计划项目(gxyq2019082,gxyq2018076) 巢湖学院科学研究项目(XLY-201906) 巢湖学院应用型课程开发项目(ch19yykc21) 安徽省重大教改项目(PX-6171782) 巢湖学院教学质量工程项目(ch18jxyj42) 安徽省高校自然科学研究项目(KJ2018A0455)。
关键词 加权广义线性模型 相依响应 模型选择 重对数律 强一致性 weighted generalized linear model dependent response model selection law of logarithm strong consistency
  • 相关文献

参考文献2

二级参考文献3

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部