期刊文献+

基于随机过程的粒子群改进算法 被引量:1

Improved Particle Swarm Optimizat iioonn Algorithm Based on Stochastic Process
下载PDF
导出
摘要 针对PSO算法在寻优过程中,容易陷入局部最优解和早熟的问题,提出基于随机过程的粒子群改进(SPPSO)算法.该算法从随机变量的角度以及布朗运动对某点值的吸收与反射思想,提出三个方面的改进,从而提高算法的全局搜索能力.最后对6个测试函数进行仿真实验,结果表明SPPSO算法在寻优精度、收敛速度以及寻优正确率等方面的性能优于PSO算法和权重线性递减的PSO算法. Aiming at the problem that the PSO algorithm is easy to fall into the local optimal solution and premature in the process of optimization,a particle swarm improvement(SPPSO)algorithm based on random process is proposed. This algorithm proposes three improvements to improve the global search ability of the algorithm from the perspective of random variables and the idea that Brownian motion absorbing and reflecting a certain point value. Finally,a simulation experiment is carried out on the six test functions. The results show that the SPPSO algorithm is superior to PSO algorithm and PSO algorithm with linearly decreasing weights in terms of the optimization accuracy,convergence speed and optimization accuracy rate.
作者 罗庆仪 李秦 Luo Qing-yi;Li Qin(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou Gansu 730070)
出处 《河西学院学报》 2020年第2期19-26,共8页 Journal of Hexi University
关键词 粒子群算法 随机过程 随机变量 布朗运动 测试函数 Particle swarm algorithm Stochastic process Random variable Brownian motion Test function
  • 相关文献

参考文献3

二级参考文献33

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 3韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 4Kennedy J, Eberhart R. Particle swarm optimization [C]. IEEE Int Conf on Neural Networks. Piscataway: IEEE Service Center, 1995: 1942-1948.
  • 5Shi Y, Eberhart R. A modified particle swarm optimizer [C]. IEEE World Conf on Computational Intelligence. Piscataway: IEEE Press,1998: 69-73.
  • 6Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [C]. Proc of the IEEE Conf on Evolutionary Computation. Piscataway: IEEE Press, 2001 : 101-106.
  • 7Zhang L P, Yu H J, Hu S X. A new approach to improve particle swarm optimization[C]. Lecture Notes in Computer Science. Chicago: Springer-Verlag, 2003: 134-139.
  • 8Krink T, Vesterstroem J S, Riget J. Particle swarm optimization with spatial particle extension[C]. Proe of the IEEE Conf on Evolutionary Computation. Honolulu: IEEE Inc, 2002: 1474-1479.
  • 9Clerc M. The swarm and queen.. Towards deterministic and adaptive particle swarm optimization [C]. Proc of IEEE Conf on Evolutionary Computation. Washington D C, 1999: 1951-1957.
  • 10Frans van den Bergh. An analysis of particle swarm optimizers[D]. Pretoria: University of Pretoria, 2001.

共引文献161

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部