期刊文献+

采用GA-BPNN与TLS模型的风电机组异常辨识方法 被引量:8

Anomaly Identification Method of Wind Turbine Based on Genetic Algorithm-Back Propagation Neural Network and t-location Scale Model
下载PDF
导出
摘要 基于反向传播神经网络(BPNN)建立了风电机组状态参数预测模型,并采用遗传算法(GA)对BPNN模型的初始权重与阈值进行优化,有效消除环境因素对风电机组状态参数的影响;采用TLS(t-location scale)分布模型刻画不同风速区间下预测残差的分布特性,基于矩估计方法实现TLS分布参数估计,并在此基础上提出了计及风速影响的状态残差异常程度量化指标。以某风电场的1.5 MW双馈风电机组为例进行了异常分析,结果验证了模型的有效性和准确性。 Based on back propagation neural network(BPNN), a wind turbine(WT) state parameter prediction model is established, and the initial weight and threshold of BPNN model are optimized by genetic algorithm(GA), which effectively eliminates the influence of environmental factors on WT state parameters. The t-location scale(TLS) distribution is used to characterize the distribution characteristics of state parameter prediction errors with different wind speed intervals. Moment estimation is used to calculate the TLS distribution parameters and error anomaly index(EAI) is defined to quantify the anomaly level of prediction errors, which is verified to be an indicator of the WT anomalies. The proposed method is used for 1.5 MW WT with doubly fed induction generators and the results show that the proposed method is effective and accurate.
作者 李泽宇 郭创新 朱承治 LI Zeyu;GUO Chuangxin;ZHU Chengzhi(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China)
出处 《电力系统自动化》 EI CSCD 北大核心 2020年第9期95-102,共8页 Automation of Electric Power Systems
基金 国家重点研发计划资助项目(2017YFB0902600) 国家自然科学基金资助项目(51877190) 国家电网公司科技项目(52110418000T)。
关键词 风电机组 数据采集与监控系统 预测模型 TLS分布模型 异常辨识 wind turbine(WT) supervisory control and data acquisition(SCADA)system prediction model TLS distribution model anomaly identification
  • 相关文献

参考文献6

二级参考文献69

  • 1李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:896
  • 2李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:401
  • 3袁志坚,孙才新,袁张渝,李剑,廖瑞金.变压器健康状态评估的灰色聚类决策方法[J].重庆大学学报(自然科学版),2005,28(3):22-25. 被引量:51
  • 4张举,王兴国,李志雷.小波包能量熵神经网络在电力系统故障诊断中的应用[J].电网技术,2006,30(5):72-75. 被引量:35
  • 5孙玉芬,卢炎生.流数据挖掘综述[J].计算机科学,2007,34(1):1-5. 被引量:36
  • 6Hameed Z,Hong Y S,Cho Y M,et al.Condition monitoring and fault detection of wind turbines and related algorithms: a review[J].Renewable and Sustainable Energy Reviews,2009,13(1):1-39.
  • 7Yang W X,Jiang J S.Wind turbine condition monitoring and reliability analysis by SCADA information[C]//International Conference on Mechanic Automation and Control Engineering.China:IEEE,2011:1872-1875.
  • 8IEC.IEC61400-25-1 Wind turbines - Part 25-1:Communications for monitoring and control of wind power plants - Overall description of principles and models[S].Switzerland:International Electrotechnical Commission,2006.
  • 9Zaher A,McArthur S D J,Infield D G,et al.Online wind turbine fault detection through automated SCADA data analysis[J].Wind Energy,2009,12(6):574-593.
  • 10Feng Y H,Qiu Y N,Crabtree C J,et al.Use of SCADA and CMS signals for failure detection and diagnosis of a wind turbine gearbox[C]//Proceeding of European Wind Energy Conference.Brussels,Belgium:European Wind Energy Association,2011:17-19.

共引文献192

同被引文献118

引证文献8

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部