期刊文献+

柱状晶Cu-Al-Be形状记忆合金低温压缩性能研究 被引量:1

Low-temperature Compression Properties of Columnar Cu-Al-Be Shape Memory Alloy
原文传递
导出
摘要 利用竖直下拉式热型连铸技术制备柱状晶Cu-Al-Be形状记忆合金,其马氏体相变结束温度(Mf)在-50℃以下,柱状晶生长方向为轴向。在温度低于Mf时,对普通多晶、平行于柱状晶方向和垂直于柱状晶方向的试样分别进行单向压缩试验,并进行金相组织观察与断口形貌分析。结果发现,柱状晶Cu-Al-Be合金杆件组织结构为类似于贝壳的仿生结构且断裂形式相似,垂直于柱状晶方向的试样塑性最好,断裂前吸收能量最高,综合性能最好。 Columnar crystal Cu-Al-Be shape memory alloy rods were prepared by vertical Ohno continuous casting technology,in which the Mfwas below-50℃,and the columnar crystal growth direction presented the axial direction.The samples which are normal polycrystalline or parallel to the columnar crystal direction or perpendicular to the columnar crystal direction were compressed in single direction under a low temperature condition below the Mf.The image along the growth direction and fracture morphology of the columnar crystal were observed by optical microscope(OM)and SEM.The results reveal that the microstructure of the columnar Cu-Al-Be alloy rod is similar to that of the hierarchical structures of nacre and the fracture morphology is similar too.In addition,the sample perpendicular to the columnar crystal direction presents the desirable plasticity and the highest absorption energy before fracture,showing the desirable comprehensive performance.
作者 王果 肖小亭 邓俊 黎沃光 余业球 Wang Guo;Xiao Xiaoting;Deng Jun;Li Woguang;Yu Yeqiu(School of Materials and Energy,Guangdong University of Technology)
出处 《特种铸造及有色合金》 CAS 北大核心 2020年第3期297-301,共5页 Special Casting & Nonferrous Alloys
基金 装备预研领域基金资助项目(61409230506)。
关键词 柱状晶 Cu-Al-Be形状记忆合金 低温压缩 断裂机制 贝壳仿生结构 Columnar Crystal Cu-Al-Be Shape Memory Alloy Low Temperature Compression Fracture Mecha-nism Hierarchical Structures of Nacre
  • 相关文献

参考文献6

二级参考文献52

  • 1徐根应,汪明朴.CuAlMnZnZr合金拉伸变形及其宽滞后效应[J].金属热处理学报,1996,17(1):5-9. 被引量:2
  • 2赵连城,蔡伟.Ni-Ti-Nb宽滞后形状记忆合金的形变诱发马氏体相变及其可逆性[J].金属学报,1997,33(1):90-98. 被引量:20
  • 3Salichs J,Hou Z,Moori M.Vibration suppression of structures using passive shape memory alloy energy dissipation devices[J].Journal of Intelligent Material Systems and Structures,2001(10):671—680.
  • 4Baz A. Comparsion of different thermomechanical models for shape memory alloys[A]. Garcia E, Cudney H, Knowles G J. Adaptive Structures and Composite Materials: Analysis and Application[C]. NewYork: ASME, 1994. 9-19.
  • 5Tadakit T, Takamori M. Thermal cycling effect in Cu-Zn-Al shape memory alloy with B2 and DO3 typeordered structure in parent phase [J]. Trans JIM,1987, 28(2): 120-128.
  • 6Perkins J, Muesing W E . Martensitic transformation cycling effect in Cu-Zn-Al shape memory alloy[J].Metall Trans, 1983, 14A: 33-39.
  • 7Buehler W J, Gilfrich J V, Wiley R C. Effect of low temperature phase changes on the mechanical properties of alloys near composition TiNi[J]. Journal of Applied Physics, 1963, 34: 1475- 1477.
  • 8Otsuka K, Sawamura T, Shimizu K. Crystal structure and internal defects of equiatomic TiNi martensite[J].Phys Stat Sol(a), 1971, 5:457 - 470.
  • 9Knowles K M, Smith D A. The crystallography of the martensitic transformation in equiatomic nickel-titanium[J]. ActaMetall, 1981, 29: 101-110.
  • 10Andreasen G F, Hillman T B. An evaluation of 55 cobalt substituted nitinol wire for use in orthodontics[J].JADA, 1971, 82: 1373-1375.

共引文献113

同被引文献22

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部