期刊文献+

Recurrent genome duplication events likely contributed to both the ancient and recent rise of ferns^FA 被引量:6

原文传递
导出
摘要 Ferns, the second largest group of vascular plants, originated ~400 mil ion years ago(Mya). They became dominant in the ancient Earth landscape before the angiosperms and are stil important in current ecosystems.Many ferns have exceptional y high chromosome numbers,possibly resulting from whole-genome duplications(WGDs).However, WGDs have not been investigated molecularly across fern diversity. Here we detected and dated fern WGDs using a phylogenomic approach and by calculating synonymous substitution rates(Ks). We also investigated a possible correlation between proposed WGDs and shifts in species diversification rates. We identified 19 WGDs: three ancient events along the fern phylogenetic backbone that are shared by 66%–97% of extant ferns, with additional lineage-specific WGDs for eight orders, providing strongevidence for recurring genome duplications across fern evolutionary history. We also observed similar Ks peak values for more than half of these WGDs, with multiple WGDs occurring close to the Cretaceous(~145–66 Mya). Despite the repeated WGD events, the biodiversity of ferns declined during the Cretaceous, implying that other factors probably contributed to the floristic turnover from ferns to angiosperms. This study provides molecular evidence for recurring WGDs in ferns and offers important clues to the genomic evolutionary history of ferns.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2020年第4期433-455,共23页 植物学报(英文版)
基金 supported by funds from the National Natural Science Foundation of China(31770242 and31970224) funds from the Key Laboratory of Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering at Fudan University。
  • 相关文献

同被引文献126

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部