摘要
摩擦纳米发电机是基于自驱动纳米技术并以接触/摩擦起电和静电感应为基础的微/纳机电动力系统,提高其起电性能的有效手段之一是将微/纳织构制备在接触界面上。采用理论与试验相结合的方法开展摩擦纳米发电机表面织构的优化设计研究。建立摩擦纳米发电机织构界面黏附接触模型,探讨外载荷、织构面密度及宽度对摩擦纳米发电机起电性能的影响规律,获得不同外载荷下使摩擦纳米发电机起电性能最优的织构参数,并制备织构化摩擦纳米发电机,构建起电性能测试平台,试验验证摩擦纳米发电机最优织构的设计效果。结果表明:不同外载荷下使摩擦纳米发电机起电性能达到最优的织构参数不同;相比于织构宽度,织构面密度对于摩擦纳米发电机起电性能的影响更为显著;所构建的理论模型结果与试验结果具有较好的一致性,可为摩擦纳米发电机表面织构的设计提供理论指导。
Triboelectric nanogenerator(TENG)is a micro/nano electromechanical power system which is based on the ideas of self-powered nanotechnology and the mechanisms of triboelectric and electrostatic induction.An effective way to improve power generation of TENGs is to introduce micro-/nano-textures onto the contact surface.The optimum design of surface texture in TENGs is studied by combining simulation with experiment.An adhesive contact model for TENG with textured interface is established to discuss the influence of applied load,texture density and width on the power generation of TENG and obtain optimal texture parameters for maximum TENG power generation under different applied loads.In addition,TENGs with textured surfaces are fabricated and the test platform of electrical output for TENGs is constructed to verify the design effect of the optimal texture of TENG.It is shown that the optimal texture parameters of TENGs under different applied loads vary.Compared with the texture width,the influence of texture density on the power generation of TENG is more significant.In addition,the simulation results are in good agreement with the experimental results,which indicates that the theoretical model can provide the guideline for the texture design in TENG.
作者
杨潍旭
王晓力
陈平
YANG Weixu;WANG Xiaoli;CHEN Ping(School of Mechanical Engineering,University of Science and Technology Beijing,Beijing 100083;Department of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081)
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2020年第3期130-136,共7页
Journal of Mechanical Engineering
基金
中国博士后基金(2019M660449)
国家自然科学基金(51735001)
国家重点研发计划(2018YFC0810500)资助项目。
关键词
摩擦纳米发电机
表面织构
接触力学
接触起电
triboelectric nanogenerator
surface texture
contact mechanics
contact electrification