期刊文献+

一类分数阶混合型差分与和分方程任意初值问题解的存在唯一性

Existence and Uniqueness of the Solution of the Initial Value Problems for a Class of Riemann-Loiuville Fractional Mixed Difference and Summation Equations
下载PDF
导出
摘要 本文研究一类Riemann-Liouville型混合分数阶差分与和分方程的初值问题,通过建立与该类初值问题解等价的Volterra和分方程,运用Banach压缩映射原理,在一定条件下,证明该初值问题解的存在唯一性.另外,还通过构造逐次迭代序列,运用离散Mittag-Leffler函数的性质和离散分数阶Gronwall不等式,在较弱的条件下得到该初值问题解的存在唯一性。 This paper is concerned with the initial value problems for a class of Riemann-Loiuville fractional equations mixed with difference and summation.By establishing the Volterra Summation equation equivalent to the solution of this kind of initial value problem,the existence and uniqueness of the solutions of the initial value problem are proved under certain conditions by using the principle of Banach Compression Mapping.In addition,the existence and uniqueness of solutions of the initial value problem is also obtained under weak conditions by using the successive approximation method combined with the discrete Mittag-Leffler function and the discrete fractional Gronwall inequality.
作者 张晓锐 王良龙 ZHANG Xiaorui;WANG Lianglong(School of Mathematical Sciences,Anhui University,Hefei 230039,China)
出处 《安徽建筑大学学报》 2020年第1期83-86,94,共5页 Journal of Anhui Jianzhu University
基金 国家自然科学基金(11771001) 安徽省质量工程项目(2018zygc107)。
关键词 分数阶差分和分方程 初值问题 Volterra和分方程 Mittag-Leffler函数 GRONWALL不等式 fractional difference and summation equation initial value problem volterra summation equation mittag-leffler functions discrete fractional gronwall inequality existence and uniqueness of solutions
  • 相关文献

参考文献3

二级参考文献65

  • 1徐明瑜,谭文长.中间过程、临界现象——分数阶算子理论、方法、进展及其在现代力学中的应用[J].中国科学(G辑),2006,36(3):225-238. 被引量:34
  • 2Miller K S,Ross B. An introduction to the fractional calculus and fractional differential equations[M]. New York: John Wiley & Sons, 1993.
  • 3Podlubny I. Fractional differential equations[M]. San Diego:Acad Press,1999.
  • 4Samko S G,Kilbas A A,Maritchev O I. Integrals and derivatives of the fractional order and some of their applications[M]. Minsk: Naukai Tekhnika, 1987.
  • 5Benchohra M, Henderson J, Ntouyas S K,et al. Existence results for fractional order functional differential equations with infinite delay[J]. J Math Anal Appl,2008,338(2) :1340.
  • 6Oldham K B,Spanier J. The fractional calculus[M]. New York:Acad Press,1974.
  • 7Kiryakova V. Generalized fractional calculus and applications[G]//Pitman Research Notes in Math:301. Harlow: Longman, 1994.
  • 8Blair G W S. Some aspects of the search for invariants[J]. Br J for Philosophy of Sci,1950,1(3):230.
  • 9Blair G W S. The role of psychophysics in theology[J]. J of Colloid Sci,1947(2) -21.
  • 10Westerlund S. Dead matter has memory! [J]. Physica Scripta, 1991,43 : 174.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部