期刊文献+

基于改进的卷积记忆神经网络的文本情感分类 被引量:3

Text Sentiment Classification Based on Improved Convolutional Memory Neural Network
下载PDF
导出
摘要 针对如何将评论文本按照不同的情感进行分类的问题,提出改进的卷积记忆神经网络模型。该模型融合了卷积神经网络和双向长短期记忆神经网络在信息提取上的优势,并在卷积神经网络中进行动态池化处理,从而提取更多的显著文本特征。实验结果表明,改进卷积记忆神经网络的准确率、精度、召回率、F1测度分别达到92.41%、92.32%、93.27%、93.63%。相比于卷积神经网络、双向长短期记忆神经网络、卷积记忆神经网络,该模型在处理和评论文本情感分类问题上具有较好的效果。 An improved convolutional memory neural network model is proposed for how to classify comment texts according to different emotions.The model combines the advantages of convolutional neural networks and bidirectional long-and short-term memory neural networks in information extraction,and makes dynamic pooling processing in convolutional neural networks to extract more significant text features.The experimental results show that the accuracy,precision,recall and F1-measure of improved convolutional memory neural network are 92.41%,92.32%,93.27%,93.63%,respectively.Compared with convolutional neural networks,bidirectional long-term and short-term memory neural network,and convolutional memory neural networks,this model has a good effect in dealing with the emotional classification of comment texts.
作者 陈可嘉 郑晶晶 CHEN Kejia;ZHENG Jingjing(School or Economics and Manaaement,Fuzhou University,Fuzhou 350116,China;不详)
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2020年第1期86-92,共7页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家自然科学基金项目(71701019)。
关键词 文本分类 情感分类 改进的卷积记忆神经网络 在线评论 深度学习 text classification sentiment classification improved convolutional memory neural network online review deep learning
  • 相关文献

参考文献11

二级参考文献97

  • 1董振东.语义关系的表达和知识系统的建造[J].语言文字应用,1998(3):79-85. 被引量:59
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3毛六平,王耀南,孙炜,戴瑜兴.一种递归模糊神经网络自适应控制方法[J].电子学报,2006,34(12):2285-2287. 被引量:9
  • 4Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 5Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.
  • 6Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424.
  • 7Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86.
  • 8Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124.
  • 9K Dave, S lawrence, DM Pennock. , Mining the peanut gallery: opinion extraction and semantic classification of product reviews[A]. WWW2003, 519-28.
  • 10Bing Liu, Minqing Hu, Junsheng Cheng. Opinion observer: analyzing and comparing opinions on the Web[A].WWW2005, 324- 351.

共引文献615

同被引文献23

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部