期刊文献+

Semi-Supervised Classification of Data Streams by BIRCH Ensemble and Local Structure Mapping 被引量:2

原文传递
导出
摘要 Many researchers have applied clustering to handle semi-supervised classification of data streams with concept drifts.However,the generalization ability for each specific concept cannot be steadily improved,and the concept drift detection method without considering the local structural information of data cannot accurately detect concept drifts.This paper proposes to solve these problems by BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies)ensemble and local structure mapping.The local structure mapping strategy is utilized to compute local similarity around each sample and combined with semi-supervised Bayesian method to perform concept detection.If a recurrent concept is detected,a historical BIRCH ensemble classifier is selected to be incrementally updated;otherwise a new BIRCH ensemble classifier is constructed and added into the classifier pool.The extensive experiments on several synthetic and real datasets demonstrate the advantage of the proposed algorithm.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第2期295-304,共10页 计算机科学技术学报(英文版)
基金 This work was supported by the National Natural Science Foundation of China under Grant No.61866007 the Natural Science Foundation of Guangxi Zhuang Autonomous Region of China under Grant No.2018GXNSFDA138006 Humanities and Social Sciences Research Projects of the Ministry of Education of China under Grant No.17JDGC022.
  • 相关文献

参考文献1

二级参考文献16

  • 1Han Jiawei,Kamber M. Data Mining:Concepts and Techniques[M].Singapore,Singapore:Elsevier,2006.
  • 2Wang Haixun,Fan Wei,Yu P S. Mining Concept-Drifting Data Streams Using Ensemble Classifiers[A].Washington DC USA,2003.226-235.
  • 3Aggarwal C. Data Streams:Models and Algorithms[M].Berlin,Germany:Springer-Verlag,2007.
  • 4Gehrke J,Ganti V,Ramakrishnan R. Boat-Optimistic Decision Tree Construction[A].Philadelphia USA,1999.169-180.
  • 5Domingos P,Hulten G. Mining High-Speed Data Streams[A].Boston,USA,2000.71-80.
  • 6Hulten G,Spencer L,Domingos P. Mining Time-Changing Data Streams[A].San Francisco,CA,USA,2001.97-106.
  • 7Scholz M,Klinkenberg R. An Ensemble Classifier for Drifting Concepts[A].Portugal,Porto,2005.53-64.
  • 8Aggarwal C C,Hat J,Wang Jianyong. A Framework for OnDemand Classification of Evolving Data Streams[J].IEEE Transactions on Knowledge and Data Engineering,2006,(05):577-589.
  • 9Masud M M,Gao Jing,Khan L. A Practical Approach to Classify Evolving Data Streams:Training with Limited Amount of Labeled Data[A].Pisa,Italy,2008.929-934.
  • 10Bifet A,Holmes G,Pfahringer B. New Ensemble Methods for Evolving Data Streams[A].France:Paris,2009.139-148.

共引文献17

同被引文献13

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部