期刊文献+

基于SSD神经网络的图像自动标注及应用研究 被引量:2

Automatic Image Annotation and Applied Research based on SSD Deep Neural Network
下载PDF
导出
摘要 针对目前图片标注成本高的问题,提出了融合自动标注半监督学习的协同训练算法:先基于SSD算法训练图片检测模型,融合半监督学习算法,在用自动标注的图片训练模型时叠加手动标注的数据,最终生成目标检测自动标注模型。实验结果表明,模型在经过6次迭代后自动标注生成的位置坐标与手动标注的真实位置坐标之间的平均IoU达到了80%以上,测试结果说明该算法在实际应用中有较大的应用前景。 At present,image annotation costs a lot of manpower.Aiming at the above problems,this paper proposes a collaborative training algorithm that integrates automatic labeling and semi-supervised learning.First,the image detection model is trained based on SSD algorithm.Then,the algorithm idea of semi-supervised learning is integrated.When training with the automatically annotated images,part of manually annotated data is superimposed at the same time,finally generate a usable target detection model.The experimental results show that after 6 iterations,the IoU between the position coordinates generated by automatic annotation and the real position coordinates manually annotated reached more than 80%.The test results show that this algorithm has a great application prospect in practical application.
出处 《信息技术与标准化》 2020年第4期38-42,47,共6页 Information Technology & Standardization
关键词 图像自动标注 SSD 半监督学习 协同训练算法 目标检测框架 automatic image annotation single shot multiBox Deteotor semi-supervised learning cooperative training algorithm object detection frame
  • 相关文献

参考文献6

二级参考文献33

共引文献92

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部