期刊文献+

基于改进CNN的公交车内拥挤状态识别 被引量:3

Recognition of Crowded State in Bus Based on Improved Convolution Neural Network
下载PDF
导出
摘要 针对传统的视频图像处理方法对公交车内乘客拥挤状态的检测受运动阴影、动态背景及场景光照变化等因素的影响问题,提出了一种基于改进卷积神经网络VGG-16的公交车内拥挤状态识别方法。该方法在VGG-16的模型基础上,优化全连接层层数,使用迁移学习共享VGG-16预训练模型的各层权值参数进行训练。相对于文中的传统图像处理方法、AlexNet模型、GooleNet模型以及标准VGG-16模型,改进的VGG-16模型对公交车拥挤状态的识别准确率最高,识别精度能够达到96.1%。模型的损失值比标准VGG-16模型收敛得更快,模型表现得更加稳定。实验证明:改进后的VGG-16模型能够更好地提取公交内拥挤状态的特征,解决公交车内拥挤状态的识别问题。 Aiming at the problem that the traditional video image processing method is used to detect the crowded state of passengers in the bus,such as motion shadow,dynamic background and scene illumination changes,a crowded bus state recognition method based on improved convolution neural network VGG-16 is proposed. Based on the VGG-16 model,this method optimizes the number of all-connected layers and uses the migration learning to share the weight parameters of each layer of the VGG16 pre-training model for training. Compared with the traditional image processing methods,AlexNet model,GooleNet model and standard VGG-16 model,the improved VGG-16 model has the highest recognition accuracy of bus congestion status,and the recognition accuracy can reach 96.1%. The loss value of the model converges faster than that of the standard VGG-16 model,and the model is more stable. The experiment proves that the improved VGG-16 model can better extract the characteristics of the crowded state in the bus and solve the problem of the congestion status in the bus.
作者 徐明远 崔华 张立恒 XU Ming-yuan;CUI Hua;ZHANG Li-heng(School of Informational Engineering,Chang'an University,Xi'an 710000,China)
出处 《计算机技术与发展》 2020年第5期32-37,共6页 Computer Technology and Development
基金 陕西省重点研发计划重点项目(2018ZDXM-GY-047) 教育部联合基金(6141A02022610)。
关键词 图像识别 卷积神经网络 模型改进 VGG-16 公交车 拥挤状态 image recognition convolution neural network model improvement VGG-16 bus crowded state
  • 相关文献

参考文献9

二级参考文献58

  • 1娄震,金忠,杨静宇.基于类条件置信变换的后验概率估计方法[J].计算机学报,2005,28(1):18-24. 被引量:6
  • 2王成儒,吴娅辉.旋转不变纹理特征用于两级图像检索[J].光电工程,2005,32(3):70-72. 被引量:10
  • 3江立,阮秋琦.基于神经网络的手势识别技术研究[J].北京交通大学学报,2006,30(5):32-36. 被引量:12
  • 4LOWE D G.Distinctive image features from scaleinvariant key points[J].International Journal of Computer Vision,2004,60(2): 91-110.
  • 5LOWE D G.Object recognition from local scale invariant features [C]∥Proceedings of the International Conference on Computer Vision.Piscataway,NJ,USA: IEEE Computer Society,1999: 1150-1157.
  • 6CROWLEY J L.A representation for visual information [D].Pittsburgh,USA: Carnegie Mellon University,1981.
  • 7MIKOLAJCZYK K.A performance evaluation of local descriptors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10): 1615-1630.
  • 8XIANG Shiming,NIE Fiping.Learning a Malanobis distance metric for data clustering and classification[J].Pattern Recognition,2008,41(12): 3600-3612.
  • 9LI Baihua,HORST H.Using kd trees for robust 3D point pattern matching [C]∥Proceedings of the 4th International Conference on 3D Digital Imaging and Modeling.Piscataway,NJ,USA: IEEE Computer Society,2003: 95-102.
  • 10BEIS J S,LOWE D G.Shape indexing using approximate nearestneighbor search in highdimensional spaces [C]∥Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA: IEEE,1997: 1000-1006.

共引文献1921

同被引文献24

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部