期刊文献+

基于K近邻的众包数据分类算法 被引量:3

Crowdsourcing data classification algorithm via K-nearest neighbor
下载PDF
导出
摘要 针对众包数据处理中的质量控制问题,提出了一种加权K近邻投票分类方法。该方法不单单只是考虑了某个样例的标记来返回一个答案,而是通过综合考虑样例的近邻来得到更加准确的答案。同时对样例的近邻加以适当的权重来进一步提高算法的性能,并保持了传统多数投票分类的简单性。K近邻投票分类算法可以有效地解决缺乏标记的情况,通过对近邻加以权重可以解决不平衡标记造成的影响,从而使算法的泛化性更强。通过各种场景下的实验,结果表明加权K近邻投票分类方法取得了很好的效果。 Aiming at the quality control problem in crowdsourcing data processing,this paper proposed a weighted K-nearest neighbor voting method.This method not only considered the mark of a certain sample to return an answer,but rather obtained a more accurate answer by considering the neighbors of the sample comprehensively.At the same time,it applied appropriate weights to the neighbors of the sample to further improve the performance of the algorithm and maintained the simplicity of the traditional majority vote.The K-nearest neighbor vote can effectively solve the problem of lack of markup.By weighting the neighbors,it can solve the influence of the unbalanced mark and made the generalization of the algorithm be stronger.Through experiments in various situations,the results show that the proposed weighted K-nearest neighbor voting method has achieved good results.
作者 李佳烨 余浩 Li Jiaye;Yu Hao(Guangxi Key Laboratory of Multi-source Information Mining&Security,Guangxi Normal University,Guilin Guangxi 541004,China;School of Computer Science&Engineering,Central South University,Changsha 410083,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第4期973-976,共4页 Application Research of Computers
基金 国家重点研发计划资助项目(2016YFB1000905) 国家自然科学基金资助项目(61170131,61263035,61573270,90718020) 国家“973”计划资助项目(2013CB329404) 中国博士后科学基金资助项目(2015M570837) 广西自然科学基金资助项目(2015GXNSFCB139011,2015GXNSFAA139306)。
关键词 众包数据 质量控制 K近邻投票 多数投票 crowdsourcing data quality control K-nearest neighbor voting majority voting
  • 相关文献

参考文献3

二级参考文献47

  • 1闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,21(7):4-10. 被引量:56
  • 2朱根标,张凤鸣,董群立.基于核函数和相似度的动态聚类算法[J].微电子学与计算机,2006,23(3):178-179. 被引量:8
  • 3Zhu X, Ghahramani Z, Lafferty J. Semi - supervised learning using gaussian fields and harmonic functions[C] //Proceedings of the Twentieth International Conference on Machine Learning. Washington I)C, USA, 2003 : 328 - 335.
  • 4Camps- Valls G, Marsheva T, Zhou D. Semisupervised graph-based hyperspectral image classification[J]. IEEETrans. on Geoscience and Remote Sensing, 2007, 45 (10) : 3044 - 3054.
  • 5Rosenberg C, Hebert M, Schneiderman H. Semi - supervised selftraining of object detection models[J]. Application of Computer Vision, 2005, 1(5): 29- 36.
  • 6Joachirns T. Transductive inference for text classification using support vector machines[C] //Proceedings of the Sixteenth International Conference on Machine Learning. San Francisco, USA, 1999: 200 - 209.
  • 7Quinlan J R. C4.5: Programs for MachineLearning [M]. Morgan Kauffman, 1993.
  • 8Yoshimitsu Kudoh, Makoto Haraguchi. An Appropriate Abstraction for Constructing a Compact Decision Tree [M]. Springer-Verlag Berlin Heidelberg,2000.
  • 9Sonajharia Minz, Rajni Jain. Rough Setbased Decision Tree Model for Classification[M]. Springer-Verlag Berlin Heidelberg, 2003.
  • 10B Chandra, Sati Mazumdar, Vincent Arena, et al. Elegant Decision Tree Algorithm for Classification in Data Mining[C].Proceedings of the 3th International Conference on Web Information Systems Engineering, 2002.

共引文献70

同被引文献22

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部