期刊文献+

面向汉维机器翻译的双语关联度优化模型 被引量:2

Bilingual relatedness optimization model for Chinese-Uyghur machine translation
下载PDF
导出
摘要 针对汉语—维吾尔语的统计机器翻译系统中存在的语义无关性问题,提出基于神经网络机器翻译方法的双语关联度优化模型。该模型利用注意力机制捕获词对齐信息,引入双语短语间的语义相关性和内部词汇匹配度,预测双语短语的生成概率并将其作为双语关联度,以优化统计翻译模型中的短语翻译得分。在第十一届全国机器翻译研讨会(CWMT 2015)汉维公开机器翻译数据集上的实验结果表明,与基线系统相比,在使用较小规模的训练数据和词汇表的条件下,所提方法可以同时有效地提高短语级别和句子级别的机器翻译任务性能,分别获得最高2.49和0.59的BLEU值提升。 Focused on the issue of semantic independence in Chinese-Uyghur statistical machine translation system,this paper proposed a bilingual relatedness optimization model based on neural machine translation method.The model utilized the attention mechanism to capture word alignment information as well as introduced bilingual phrase semantic relevance and inner word correlation to predict the conditional probability of bilingual phrase pair.And it took the probability as bilingual relatedness to optimize the phrase translation scores in statistical translation model.Experimental results on the 11th China Workshop on Machine Translation(CWMT 2015)Chinese-Uyghur public machine translation datasets show that the proposed approach can achieve obvious improvements both in the phrase-level and the sentence-level machine translation tasks,which outperforms the baseline system with a relative small-scale training data and vocabulary.The highest BLEU point of the proposed algorithm gains 2.49 and 0.59 respectively.
作者 潘一荣 李晓 杨雅婷 董瑞 Pan Yirong;Li Xiao;Yang Yating;Dong Rui(Xinjiang Technical Institute of Physics&Chemistry,Chinese Academy of Sciences,Urumqi 830011,China;University of Chinese Academy of Sciences,Beijing 100049,China;Xinjiang Laboratory of Minority Speech&Language Information Processing,Urumqi 830011,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第3期726-730,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(U1703133) 中科院西部之光项目(2017-XBQNXZ-A-005) 中国科学院青年创新促进会的资助项目(2017472) 新疆维吾尔自治区重大科技专项项目(2016A03007-3) 新疆维吾尔自治区高层次人才引进工程项目(Y839031201)。
关键词 维吾尔语 神经网络机器翻译 注意力机制 词对齐 生成概率 Uyghur neural network machine translation attention mechanism word alignment conditional probability
  • 相关文献

参考文献4

二级参考文献27

  • 1阿依克孜.卡德尔,开沙尔.卡德尔,吐尔根.依布拉音.面向自然语言信息处理的维吾尔语名词形态分析研究[J].中文信息学报,2006,20(3):43-48. 被引量:23
  • 2孙广范,宋金平,袁琦,肖健,单玉秋.中英可比语料库中翻译等价对抽取方法研究[J].计算机工程与应用,2007,43(32):44-46. 被引量:9
  • 3Batuer AISHAN, Maosong SUN. Uyghur-Chinese Statistical Machine Translation by Incorporating Mor- phological Information [J]. Journal of Computational System, 2010,6(10) :3137-3145.
  • 4赵红梅,吕雅娟,贲国生,等.第七届全国机器翻译研讨会(CWMT2011)评测报告[C]//第七届全国机器翻译研讨会论文集,2011:3-31.
  • 5刘凯,王志洋,于惠,等.2011全国机器翻译研讨会计算所系统描述[C]//第七届全国机器翻译研讨会论文集,2011:46-58.
  • 6Brown P F, Pietra V J D, Pietra S A D, et al. The mathematics of statistical machine translation: Param- eter estimation [J]. Computational linguistics, 1993, 19:263-311.
  • 7Koehn P, Och F J, Marcu D. Statistical phrase-based translation [C]//Proceedings of the 2003 Conference of the North American Chapter of the ACL on Human Language Technology-Volume 1, 2003 : 48-54.
  • 8Chiang D. Hierarchical phrase-based translation [J]. Computational Linguistics, 2007, 33: 201-228.
  • 9Xiong D, Liu Q, Lin S. Maximum entropy based phrase reordering model for statistical machine transla- tion [C]//Proceedings of the Association for Computa- tional Linguistics, 2006: 521-528.
  • 10Liu Y, Liu Q, Lin S. Tree-to-string alignment tem- plate for statistical machine translation [C]//Proceed- ings of the 21st International Conference on Computa- tional Linguistics and the 44th annual meeting of the ACL, 2006:609-616.

共引文献34

同被引文献58

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部