期刊文献+

基于用户兴趣的跨网络用户身份识别算法 被引量:4

User identification across social network based on user interests
下载PDF
导出
摘要 针对现有算法对用户兴趣在跨网络用户身份识别中作用的忽视以及时间复杂度高的问题,提出了基于用户兴趣的跨社交网络用户身份识别算法(UI-UI)。首先利用分块思想对用户节点进行初筛选,以提升算法效率、降低时间复杂度;其次,根据用户产生内容(UGC)和用户社交关系对用户兴趣进行建模,并计算兴趣相似度作为身份识别的依据;最后利用半监督学习的方法进行跨网络用户身份识别。通过在真实社交网络中进行实验,结果表明UI-UI算法能有效识别跨网络用户,且准确率和召回率稳定,运行时间显著减少。 Aiming at the problem of ignoring the role of user interest in user identification across social network and the high time complexity,this paper proposed a user identity algorithm based on user interest(UI-UI).Firstly,this algorithm filtered the user nodes by blocking to improve the efficiency of the algorithm and reduce the time complexity.Secondly,it modeled the user’s interest according to the UGC and user social relations,and used the similarity of user interest as the basis for user identification.Finally,it used the method of semi-supervised learning for user identification.Experiments on real social network show that the UI-UI algorithm can effectively identify cross-network users,and both the accuracy and recall rate of the algorithm are stable,besides,the running time is significantly reduced.
作者 邓诗琦 李雷 施化吉 Deng Shiqi;Li Lei;Shi Huaji(School of Computer Science&Communication Engineering,Jiangsu University,Zhenjiang Jiangsu 212013,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第3期805-808,共4页 Application Research of Computers
关键词 跨网络用户身份识别 分块 用户兴趣 用户产生内容 user identification across social network blocking user interests user generated content(UGC)
  • 相关文献

参考文献3

二级参考文献94

  • 1Lazer D, Pentland A, Adamic L, et al. Social science: Computational social science. Science, 2009, 323 (5915) : 721-723.
  • 2Wang F-Y, Carley K M, Zeng D, et al. Social computing From social informatics to social intelligence. IEEE Intelligent Systems, 2007, 22(2): 79-83.
  • 3Selfhout M, Burk W, Branje S, et al. Emerging late adoles- cent friendship networks and big five personality traits: A social network approach. Journal of Personality, 2010, 78(2): 509-538.
  • 4Odekerken-SchrOder G, De Wulf K, Schumacher P. Strengthening outcomes of retailer consumer relationships: The dual impact of relationship marketing tactics and consumer personality. Journal of Business Research, 2003, 56(3) : 177-190.
  • 5Whelan S, Davies G. Profiling consumers of own brands and national brands using human personality. Journal of Retailing and Consumer Services, 2006, 13(6): 393-402.
  • 6Rentfrow P J, Gosling S D. The do re mi's of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 2003, 84 (6) : 1236-1256.
  • 7Tett R P, Jackson D N, Rothstein M. Personality measures as predictors of job performance: A meta-analytic review. Personnel Psychology, 1991, 44(4): 703-742.
  • 8Barrick M R, Mount M K. The big five personality dimensions and job performanee: A meta-analysis. Personnel Psychology, 1991, 44(1): 1-26.
  • 9Judge T A, Higgins C A, Thoresen C J, et al. The big five personality traits, general mental ability, and career success across the life span. Personnel Psychology, 1999, 52 (3) : 621-652.
  • 10Neuman G A, Wagner S H, Christiansen N D. The relation- ship between work-team personality composition and the job performance of teams. Group * Organization Management, 1999, 24(I): 28-45.

共引文献55

同被引文献39

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部