期刊文献+

基于新轮廓特征的离线签名鉴别

Off-line signature verification system based on novel contour features
下载PDF
导出
摘要 离线签名笔画内部点及背景点的局部二值模式(LBP)非常相近,且对反映离线签名笔画特征有较大干扰,因此提出了一种轮廓处LBP直方图特征。提取签名轮廓上的LBP特征,同时引入了新的规则去除部分无用模式,可有效地提升LBP的有效性和鲁棒性。另外,针对方向链码特征在应用于签名鉴别时存在局限性的问题,提出了一种轮廓模式共生直方图特征。融合这两种轮廓特征,并使用主成分分析(principal component analysis,PCA)降维。最后,使用支持向量机分别在MCYT和GPDS两种公开离线签名数据库上进行测试,取得的平均错误率分别为13.51%和12.97%。在相同的数据集上与其他方法相比,具有更低的平均错误率。 In the off-line signature,LBP of background pixels,as well as pixels inside the strokes,accounting for a large proportion in a signature bitmap,are nearly the same.Consequently,they have great interference to describe the characteristics of signature’s strokes.So this paper proposed LBPC-based feature that mainly calculated the histogram of the local binary patterns on signature’s contour and removed some useless patterns by adding a rule to improve the effectiveness and robustness of LBP.Besides,seen as an improvement for directional chain code for its limitations in the signature verification,this paper introduced LCPC-based feature which aimed at computing the statistical features of the local contour patterns co-occurrence.Then,it applied the PCA to two above combined features due to the huge dimensionality.Finally,to evaluate the performance of proposed method,using SVM classifier,it conducted experiments on MCYT and GPDS open databases and the achievable average error rates were 13.51%and 12.97%respectively.Moreover,comparisons with other methods on the same datasets provide evidence that the proposed method obtains lower average error rate than others.
作者 黄威 詹恩奇 郑建彬 汪阳 Huang Wei;Zhan Enqi;Zheng Jianbin;Wang Yang(College of Information Engineering,Wuhan University of Technology,Wuhan 430070,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第3期924-927,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61303028)。
关键词 离线签名鉴别 轮廓特征 局部二值模式 轮廓模式共生 off-line signature verification contour feature local binary pattern(LBP) local contour pattern co-occurrence
  • 相关文献

参考文献2

二级参考文献13

  • 1刘峡壁,贾云得.一种字符图像线段提取及细化算法[J].中国图象图形学报(A辑),2005,10(1):48-53. 被引量:9
  • 2Impedovo D, Pirlo G. Automatic signature verification: the state of the art [ C ]//IEEE Transactions on Systems, Man and Cybernetics Part C.. Applications and Reviews. Putrajaya, Malaysia: IEEE Computer Society, 2008, 38 ( 5 ) :609-635.
  • 3Qi Y Y, Hunt B R. Signature verification using global and grid features [ J]. Pattern Recognition, 1994, 17(12) :1621-1629.
  • 4Huang K, Yah H. Off-line signature verification using structural feature Correspondence [ J ]. Pattern Recognition, 2002, 35( 11 ) :467-2477.
  • 5Wen J, Fang B, Tang Y Yet al. Combining EODH and directional gradient density for offline signature verification [ J ]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23(6):1161-1171.
  • 6Nguyen V, Blumenstein M, Leedham G. Global features for the off-Line signature verification problem[ C ]//Proceedings of 10th International Conference on Document Analysis and Recognition Washington, DC: IEEE,2009, 1300-1304.
  • 7Nguyen V, Blumenstein M, Muthukkumarasamy Vet al. Off-line signature verification using enhanced modified direction features in conjunction with neural classifiers and support vector machines [ C ]//Proceedings of 9th International Conference on Document Analysis and Recognition. Curitiba, Brazil: Inst. of Elec. and Elec. Eng. 2007(2) : 734-738.
  • 8Blumenstein M, Liu X Y, and Verma B. An Investigation of the modified direction feature for cursive character recognition [ J ]. Pattern Recognition, 2007, 40(2) :376-388.
  • 9Esbensen K, Geladi P, Wold S. Principal component analysis [ J]. Chemometrics and Intelligent Laboratory Systems, 1987, (2) : 37-52.
  • 10Vargas J F, Ferrer M A, Travieso C Met al. Off-line handwritten signature GPDS-960 corpus [ C ]//Proceedings of International Conference on Document Analysis and Recognition. Curitiba, Brazil: IEEE. 2007(2): 764-768.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部