摘要
A femtosecond mid-infrared optical vortex laser can be used for high harmonic generation to extend cutoff energy to the kilo-electron-volt range with orbital angular momentum,as well as other secondary radiations.For these,we demonstrate a high-energy femtosecond 4μm optical vortex laser based on optical parametric chirped pulse amplification(OPCPA)for the first time.The optical vortex seed is generated from a femtosecond 4μm laser by a silicon spiral phase plate with the topological charge l of 1 before the stretcher.Through using a two-stage collinear OPCPA amplifier,the chirped vortex pulse is amplified to 12.4 m J with 200 nm full width at half-maximum bandwidth.After compression,the vortex laser pulse with 9.53 m J,119 fs can be obtained.Furthermore,the vortex characteristics of the laser beam are investigated and evaluated.This demonstration can scale to generate a higher-peak-power vortex mid-IR laser and pave a new way for high field physics.
基金
Strategic Priority Research Program of the Chinese Academy of Sciences(XDB1603)
International ST Cooperation Program of China(2016YFE0119300)
Program of Shanghai Academic/Technology Research Leader(18XD1404200)
Shanghai Municipal Science and Technology Major Project(2017SHZDZX02)
National Natural Science Foundation of China(11127901,61925507)。