期刊文献+

一种面向移动端的图像风格迁移模型压缩算法 被引量:3

An Image Style Transformation Model Compression Algorithm for Mobile Terminal
原文传递
导出
摘要 基于Johoson等的图像风格转换网络模型,在保证网络性能的前提下,在原有的网络结构上,通过运用更高效的网络计算方法对原有残差网络进行优化。实验结果表明,改进后的方法在几乎不降低图像质量的前提下,一定程度上克服了图像风格迁移模型存储量大、计算代价高、计算资源消耗大、难以移植到移动端的问题。 In this study,we propose an efficient network computing method based on Johoson’s image style transformation network model to optimize the original residual network for ensuring suitable network performance.The conducted experiments prove that the proposed method can solve the following problems:high storage and calculation cost associated with the image style transformation network model;massive consumption of the computing resources;and difficulty with respect to the transplantation to a mobile terminal without reducing the image quality.
作者 裴斐 刘进锋 李崤河 Pei Fei;Liu Jinfeng;Li Xiaohe(College of Information Engineering,Ningxia University,Yinchuan,Ningxia 750021,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第6期219-225,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61762073) 宁夏高等学校科学研究项目(NGY2015044)。
关键词 图像处理 图像风格迁移 卷积神经网络 深度残差网络 模型压缩 image processing image style transformation convolutional neural network deep residual network model compression
  • 相关文献

参考文献3

二级参考文献62

  • 1Mitchell T. Machine learning[ M ]. [ S. 1. ] : McGraw Hill, 1997.
  • 2Alpaydin E. Introduction to machine learning [ M ]. Cambridge: MIT Press, 2004.
  • 3Samuel A L. Some studies in machine learning using game of chec- kers[ J]. IBM Journal of Research and Development,2000,44 (1/2) :206-226.
  • 4Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science,2006,313(5786) :504-507.
  • 5Hinton G E, Osindero S, Teh Y. A fast learning algorithm for deep belief nets[ J]. Neural Computation ,2006( 18 ) : 1527-1554.
  • 6Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks[ C]//Advances in Neural Infor- mation Processing Systems. 2012 : 1090-1098.
  • 7Farabet C, Couprie C, Najman L, et al. Learning hierarchical fea- tures for scene labeling[J]. IEEE Trans on Pattern Analysis and Machine Intelligence ,2013,35 ( 8 ) : 1915-1929.
  • 8Tompson J, Jain A, LECUN Y, et al. Joint training of a convolutio- nal network and a graphical model for human pose estimation [ C ]// Advances in Neural Information Processing Systems. 2014: 1799- 1807.
  • 9Mikolov T, Deoras A, Percy D, et al. Strategies for training large scale neural network language models [ C ]//Proc of IEEE Workshop on Automatic Speech Recognition and Understanding. [ S. 1. ] : IEEE Press ,2011 : 196- 201.
  • 10Hinton G, Deng Li, Yu Dong, et al. Deep neural networks for acous- tic modeling in speech recognition [ J]. IEEE Signal Processing Magazine,2012,29( 11 ) :82-97.

共引文献133

同被引文献13

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部