期刊文献+

基于Girvan-Newman分裂的人群异常事件检测算法 被引量:3

Detection Algorithm of Crowd Abnormal Event Based on Girvan-Newman Splitting
原文传递
导出
摘要 针对传统基于群体运动状态分析的异常事件检测方法对场景语义信息描述不足的问题,引入了复杂网络中运用社区发现的Girvan-Newman(GN)分裂算法。将具有相似运动特征且位置相近的行人划分为多个群组,利用群组运动强度和群组数量的变化,描述群组在正常和异常场景中的差异,检测异常事件的发生。通过实验验证,该算法能够在丰富场景语义信息的同时实现对异常事件的准确检测。 In terms of the problem that the traditional detection method of crowd abnormal events based on group motion state analysis does not describe the semantic information of scene adequately,the Girvan-Newman(GN)splitting up algorithm found by the community in the complex network is introduced.The pedestrians with similar motion characteristics and similar positions are divided into multiple groups,and the differences among the groups in normal and abnormal scenes are described and the occurrence of abnormal events is detected with the changes in group motion intensity and group number.Through experimental verification,the proposed algorithm can accurately detect abnormal events while enriching the semantic information of the scene.
作者 李文韬 付晗 郝真 滕燕 杨林 赵沛然 张学武 Li Wentao;Fu han;Hao Zhen;Ten Yan;Yan Lin;Zhao Peiran;Zhang Xuewu(College of Internet of Things Engineering,Hohai University,Changzhou,Jiangsu 213022,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第6期305-311,共7页 Laser & Optoelectronics Progress
基金 国家重点研发计划(2016YFC0401606) 国家自然科学基金(61671202,61573128,61701169)。
关键词 机器视觉 运动特征 GN分裂 异常事件检测算法 machine vision motion characteristics GN splitting abnormal event detection algorithm
  • 相关文献

参考文献4

二级参考文献36

  • 1Mishra A, Wong A, Bizheva K, et al. Intra-retinal layer segmentation in optical coherence tomography images[J].Optics Express, 2009, 17(26): 23719-23728.
  • 2Chiu S J, Li X T, Nicholas P, et al. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation[J].Optics Express, 2010, 18(18): 19413-19428.
  • 3Shi F, Chen X, Zhao H, et al. Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments[J].IEEE Transactions on Medical Imaging, 2015, 34(2): 441-452.
  • 4Ishikawa H, Piette S, Liebmann J M, et al. Detecting the inner and outer borders of the retinal nerve fiber layer using optical coherence tomography[J].Graefe′s Archive for Clinical and Experimental Ophthalmology, 2002, 240(5): 362-371.
  • 5Cha Y M, Han J H. High-accuracy retinal layer segmentation for optical coherence tomography using tracking kernels based on Gaussian mixture model[J].IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(2): 6801010.
  • 6Gtzinger E, Pircher M, Baumann B, et al. Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography[J].Optics Express, 2011, 19(15): 14568-14584.
  • 7Fercher A F, Hitzenberger C K, Kamp G, et al. Measurement of intraocular distances by backscattering spectral interferometry[J].Optics Communications, 1995, 117(1): 43-48.
  • 8Schmitt J M, Xiang S H, Yung K M. Speckle in optical coherence tomography[J].Journal of Biomedical Optics, 1999, 4(1): 95-105.
  • 9Fernández D C, Salinas H M, Puliafito C A. Automated detection of retinal layer structures on optical coherence tomography images[J].Optics Express, 2005, 13(25): 10200-10216.
  • 10Ishikawa H, Stein D M, Wollstein G, et al. Macular segmentation with optical coherence tomography[J].Investigative Ophthalmology & Visual Science, 2005, 46(6): 2012-2017.

共引文献56

同被引文献36

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部