摘要
This paper deals with constrained trace, matrix and constrained matrix Harnack inequalities for the nonlinear heat equation ωt = ?ω + aωln ω on closed manifolds. A new interpolated Harnack inequality for ωt = ?ω-ωln ω +εRω on closed surfaces under ε-Ricci flow is also derived. Finally, the author proves a new differential Harnack inequality for ωt= ?ω-ωln ω under Ricci flow without any curvature condition. Among these Harnack inequalities, the correction terms are all time-exponential functions, which are superior to time-polynomial functions.
基金
National Natural Science Foundation of China(No.11671141)
the Natural Science Foundation of Shanghai(No.17ZR1412800)。