期刊文献+

New Differential Harnack Inequalities for Nonlinear Heat Equations

原文传递
导出
摘要 This paper deals with constrained trace, matrix and constrained matrix Harnack inequalities for the nonlinear heat equation ωt = ?ω + aωln ω on closed manifolds. A new interpolated Harnack inequality for ωt = ?ω-ωln ω +εRω on closed surfaces under ε-Ricci flow is also derived. Finally, the author proves a new differential Harnack inequality for ωt= ?ω-ωln ω under Ricci flow without any curvature condition. Among these Harnack inequalities, the correction terms are all time-exponential functions, which are superior to time-polynomial functions.
作者 Jiayong WU
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2020年第2期267-284,共18页 数学年刊(B辑英文版)
基金 National Natural Science Foundation of China(No.11671141) the Natural Science Foundation of Shanghai(No.17ZR1412800)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部