期刊文献+

单点扩张代数的Coxeter变换

On Coxeter Transformation of One-point Extension Algebra
下载PDF
导出
摘要 在本文中,假设A是总体维数有限的有限维结合代数,其Coxeter变换的特征多项式记为χA(λ)。设M是一个有限维左A模,本文给出了A在M处单点扩张代数B=A [M]的Coxeter变换的特征多项式的详细公式。 In this paper, let be an associative algebra with finite global dimension, its characteristic polynomial of Coxeter transformation denoted by. Let be a finite dimensional left module. This paper gives an explicit description of the characteristic polynomial of Coxeter transformation of one-point extension algebra.
作者 张晓磊 ZHANG Xiaolei(Chengdu Aeronautic Polytechnic,Chengdu,610100)
出处 《成都航空职业技术学院学报》 2020年第1期50-52,共3页 Journal of Chengdu Aeronautic Polytechnic
基金 成都航空职业技术学院自然科学项目“广义凝聚性的模化理论研究”(编号:061921)成果之一。
关键词 单点扩张代数 Coxeter变换 特征多项式 one-point extension algebra Coxeter transformation characteristic polynomial
  • 相关文献

参考文献4

二级参考文献26

  • 1Drozd Y. Tame and wild matrix problems[C]//Representations and quadratic forms(Russian), 1979.
  • 2King A D. Moduli of representations of finite-dimensional algebras[J]. Quart J Math Oxford, 1994, 45 (2): 515.
  • 3Reineke M. Moduli of representations of quivers[EB/OL]. http://arxiv. org/ abs/0802. 2147.
  • 4Domokos M. On singularities of quiver moduli[EB/OL]. Preprint 2009. math. RT/0903. 4139v2.
  • 5Domokos M. Lenzing H. Invariant theory of canonical algebras[J]. J Algebra, 2000. 255(2): 738.
  • 6Chindris C. On the invariant theory for tame tiled algebra [EB/OL]. Preprint 2011. math. RT/ll09. 2915vl.
  • 7Chindris C. Geometric characterizations of representation type of hereditary algebra and of canonical algebra [EB/OL]. Preprint 2010. math. RT /1009. 3328v2.
  • 8Ringel C M. Tame algebras and integral quadratic forms[M]. Berlin: Springer-Verlag, 1984.
  • 9Keller B. Introduction to A-infinity algebras and modules [EB/OL]. Preprint 2001. math. RA/ 9910179v2. Ser. (23).
  • 10Crawley-Boevey W. Schroer J. Irreducible components of varieties of modules[J]. J Reine Angew. Math. 2002, 553: 201.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部