期刊文献+

基于图像处理技术的热防护服参数设定算法

Research on Parameter Setting Algorithm of Thermal Protective Clothing based on Image Processing Technology
下载PDF
导出
摘要 对高温环境下经过热防护服传热到假人皮肤的整个热传导问题进行分析,建立热防护服各层厚度测量方法的数学模型。假定在皮肤外侧温度与时间关系的数据已知情况下,运用MATLAB软件,对皮肤温度与时间关系数据进行拟合,得到的拟合方程,绘制出整个传热模型过程的温度分布图;基于傅里叶定律和由能量守恒定律求得热平衡方程,计算出人体防热材料各层的最优厚度。该模型可作为高温坏境下测量热防护服各层厚度、预测人体热生理参数、评估舒适度和热传导实验的依据。 The whole heat conduction problem from thermal protective clothing to dummy skin in high temperature environment is analyzed,and the mathematical model of thickness measurement method for each layer in thermal protective clothing is established.Assuming that the data of the relationship between skin temperature and time is known,the MATLAB software is used to fit the data of the relationship between skin temperature and time and the fitting equation is obtained to draw the temperature distribution diagram of the whole heat transfer model process.Based on Fourier’s Law and the heat balance equation obtained from conservation of energy,the optimal thickness of each layer of human thermal protection material is calculated.The model can be used as a basis for measuring the thickness of each layer of thermal protective clothing,predicting human thermal physiological parameters,evaluating comfort and conducting heat experiments under high temperature environment.
作者 马海云 张敬花 张忠林 MA Hai-yun;ZHANG Zhong-Lin(School of Electronic Information and Electrical Engineering,Tianshui Normal University,Gansu Tianshui 741001,China;School of Electronic and Information Engineering,Lanzhou Jiaotong University,Gansu Lanzhou 730070,China)
出处 《淮阴师范学院学报(自然科学版)》 CAS 2020年第1期40-44,共5页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 国家自然科学基金项目(61662043) 甘肃省科技计划项目(18JR3RE245)。
关键词 高温工作防护服 热传递模型 数值模拟 傅里叶定律 最优厚度 热平衡方程 high temperature protective clothing heat transfer model numerical simulation Fourier law optimal thickness heat balance equation
  • 相关文献

参考文献4

二级参考文献23

  • 1孟祥令,张渭源.服装压力舒适性的研究进展[J].纺织学报,2006,27(7):109-112. 被引量:48
  • 2FARNWORTH B. A numerical model of the combined diffusion of heat and water vapor through clothing [ J ]. Textile Research Journal, 1986, 56( 11 ) : 653 - 665.
  • 3LI Yi, HOLCOMBE B V. Mathematical simulation of heat and moisture transfer in a human-clothing- environment system [ J ]. Textile Research Journal. 1998, 68(6): 289-297.
  • 4FAN Jintu, LUO Zhongxuan, LI Yi. Heat and moisture with sorption and condensation in porous clothing assemblies and numerical simulation [ J ]. International Journal of Heat and Mass Transfer, 2000, 43: 2989- 3000.
  • 5FAN Jintu, CHENG Xiaoyin, CHEN Yisong. An experimental investigation of moisture absorption and condensation in fibrous insulations under low temperature [ J ] Experimental Thermal and Fluid Science, 2003, 27(6) :723 -729.
  • 6XU Dinghua, CHENG Jianxin, CHEN Yuanbo, et al. An inverse problem of thickness design for bilayer textile materials under low temperature [ J ]. Journal of Physics : Conference Series, 2011, 290(1): 12- 18.
  • 7BITSADZE A V,SAMARSKII A A. Some elementary generalizations of linear elliptic boundary value problems[J]. DokL Akad Nauk SSSR,1969,185(4): 739- 740.
  • 8IONKIN N I,MOROZOVA V A. The two-dimensional heat equation with nonlocal boundary conditions[J]. Differ Eq, 2000,36(7): 982 -987.
  • 9BEILIN S A. Existence of solutions for one-dimensional wave equations with nonlocal conditions[J]. Electron J Differ Eq,2001,76:1 -8.
  • 10BOUZIANI A. On a class of parabolic equations with a nonlocal boundary condition[J]. Acad Roy Belg Bull CI Sci,1999, 10: 61-77.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部