摘要
研究π-部分特征标理论中的诱导源,给出了I_π-诱导源的若干性质.通过引入B_π-诱导源和D_π-诱导源的概念得到了I_π-诱导源的一个刻画,进而描述了这三种诱导源之间的关系,所得结果加强了Lewis定理,并覆盖了复特征标中关于诱导源的一些经典结果,同时也包含了Brauer特征标中相应的诱导源定理.
The inductive sources in the theory of π-partial characters is discussed,and some properties of I_π-inductive sources are given.By introducing the notions of B_π-inductive sources and D_π-inductive sources,a characterization of I_π-inductive sources is obtained,and the relationship among these three inductive sources is described.The results strengthen Lewis’ theorem,cover some of the classical results of inductive sources for complex characters,and also contain the corresponding theorems of inductive sources for Brauer characters.
作者
靳平
穆金琪
JIN Ping;MU Jin-qi(School of Mathematical Sciences,Shanxi University,Taiyuan 030006,Shanxi,China)
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2020年第3期1-6,共6页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(11601289)。
关键词
Π-可分群
诱导源
π-部分特征标
I_π-诱导源
稳定子群
π-separable group
inductive source
π-partial character
I_π-inductive sources
stabilizer subgroup