期刊文献+

基于BiLSTM+Attention的体育领域情感分析研究 被引量:3

Sentiment Analysis Based on BiLSTM+Attention in Sports Field
下载PDF
导出
摘要 针对体育领域情感分析资源不足、分析性能不高的现状,对体育领域的情感分析开展了研究.首先从"新浪体育"和"直播吧"等平台经过人工筛选、标注,构建了中文情感标注语料库CH-SPORT,共标记评论10 000条,其中积极评论5 000条,消极评论5 000条.然后选用了SVM、TextCNN、BiLSTM、RCNN、fastText、BiLSTM+Attention等模型对CH-SPORT进行了评估.实验结果表明,BiLSTM+Attention模型在CH-SPORT上的分类效果最佳,Acc为87.75%,比基准数据集ChnSentiCorp和NLPCC2014分别高出18.65%、11.75%.本文构建的数据集能有效应用于体育情感分析研究中. At present,the research on sentiment analysis in sports field and publicly available corpus resources are very rare and low effect of performance.Therefore,this paper construct an emotional annotation corpus for sports.Firstly,the corpus resources come from "Sina Sports Network" and "Live Bar".After data preprocessing,the emotional polarity annotation is manually performed and then different algorithms and external dataset are used for analysis and comparison.A total of 10 000 comments were marked,including 5 000 positive comments and5 000 negative comments.Then,SVM,TextCNN,BiLSTM,RCNN,fast Text,BiLSTM+Attention were selected to evaluate CH-SPORT.The experimental results show that BiLSTM+Attention model on CH-SPORT is the best,the accuracy can reach 87.75%,18.65% and 11.75% higher than the benchmark datasets ChnSentiCorp and NLPCC2014,respectively,the B:LSTM+Attention model can effectively improve the classification effect.The corpus constructed in this paper can be effectively used in sports sentiment analysis.
作者 艾山·吾买尔 魏文琳 早克热·卡德尔 Aishan Wumaier;WEI Wenlin;Zaokere Kaddeer(School of Information Science and Engineering,Xinjiang University,Urumqi Xinjiang 830046,China)
出处 《新疆大学学报(自然科学版)》 CAS 2020年第2期142-149,共8页 Journal of Xinjiang University(Natural Science Edition)
基金 国家自然科学基金项目(61662077).
关键词 情感分析 深度学习 循环神经网络 体育领域 sentiment analysis deep learning recurrent neural network sports field
  • 相关文献

参考文献3

二级参考文献48

共引文献21

同被引文献18

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部