期刊文献+

基于膜计算粒子群优化的FastSLAM算法改进 被引量:3

Improved FastSLAM Algorithm Based on Particle Swarm Optimization of Membrane Computation
下载PDF
导出
摘要 针对FastSLAM算法存在的粒子退化和粒子多样性缺失问题,提出了一种基于膜计算粒子群优化的FastSLAM算法.该算法将膜计算和粒子群优化算法相结合,利用膜计算的并行性、分布式的特点和粒子群优化算法的简单高效的优点,加速调整FastSLAM算法中粒子群的建议分布向全局最优解处收敛,在保证算法局部搜索精度的同时,扩大搜索范围,提高全局搜索的多样性,促使预测粒子更快的朝着真实的机器人位姿状态逼近,减缓粒子退化.最后利用MATLAB平台进行仿真实验.实验结果表明该算法提高了FastSLAM算法的定位精度,同时减少了系统运行时间,效率得到有效提高. In order to solve the problem of particle degradation and lack of diversity in traditional FastSLAM algorithm,a FastSLAM algorithm based on Particle Swarm Optimization for membrane computing was proposed.This algorithm combines membrane computing with particle swarm optimization(PSO).By taking advantage of the strong parallelism and distributed characteristics of membrane computing and the simple and efficient advantages of PSO,the proposed distribution of particle swarm in FastSLAM algorithm can be adjusted to converge to the global optimal solution,and the local search accuracy of the algorithm can be guaranteed while enlarging.The search range improves the diversity of global search,promotes the predicted particles to approach the real robot position and posture faster,and slows down the particle degradation.Finally,the simulation experiment is carried out on the platform of MATLAB.The experimental results show that the algorithm improves the positioning accuracy of FastSLAM algorithm,reduces the running time of the system,and improves the efficiency effectively.
作者 韩涛 黄友锐 周宁亚 徐善永 许家昌 鲍士水 HAN Tao;HUANG Yourui;ZHOU Ningya;XU Shanyong;XU Jiachang;BAO Shishui(School of Electrical and Information Engineering Anhui University of Science and Technology,Huainan Anhui 232001,China)
出处 《新疆大学学报(自然科学版)》 CAS 2020年第2期156-162,共7页 Journal of Xinjiang University(Natural Science Edition)
基金 国家自然科学基金项目(61772033).
关键词 粒子群优化算法 同时定位与建图 膜计算 FASTSLAM算法 PSO SLAM Membrane computing FastSLAM
  • 相关文献

参考文献7

二级参考文献47

  • 1王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展[J].机器人,2004,26(4):380-384. 被引量:45
  • 2李枚毅.结合免疫机制的并发定位与建图多目标进化算法[J].湘潭大学自然科学学报,2007,29(2):111-117. 被引量:3
  • 3Yin B, Wei Z Q, Zhuang X D. Robust mobile robot localization using an evolutionary particle filter[M]//Lecture Notes in Computer Science (vol.3801). Berlin, Germany: Springer-Verlag, 2005: 279-284.
  • 4Moreno L, Munoz M L, Garrido S, et al. Evolutionary filter for mobile robot global localization[C]//IEEE International Symposium on Intelligent Signal Processing. Piscataway, NJ, USA: IEEE, 2007: 891-896.
  • 5Chatterjee A, Matsuno E Improving EKF-based solutions for SLAM problems in mobile robots employing neuro-fuzzy supervision[C]//IEEE International Conference on Intelligent Systems. Piscataway, NJ, USA: IEEE, 2006: 683-689.
  • 6Kennedy J, Eberhart R. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. Piscataway, NJ, USA: IEEE, 1995: 1942-1948.
  • 7Angeline P J. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences[M]// Lecture Notes in Computer Science (vol.1447). Berlin, Germany: Springer-Verlag, 1998: 601-610.
  • 8Montemerlo M, Thrun S. Simultaneous localization and mapping with unknown data association using FastSLAM[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2003: 1985-1991.
  • 9Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-108.
  • 10Smith R C, Cheeseman P. On the representation and estimation of spatial uncertainty[J]. International Journal of Robotics Re- search, 1986, 5(4): 56-68.

共引文献68

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部