期刊文献+

基于排序互信息的无监督特征选择 被引量:2

Unsupervised feature selection based on ranking mutual information
下载PDF
导出
摘要 根据排序问题的单调先验知识,无监督学习问题中的观测属性之间也具备单调关系;否则该属性与排序无关,为冗余属性.基于排序互信息反应的两属性之间的单调关系,提出用每个属性与其他属性之间的平均互信息,来衡量每个属性与排序学习的相关程度,具有最高的平均互信息即为排序最相关的属性. Based on ranking prior knowledge of monotonicity,each observation attribute should be monotonic with the other observation attributes for unsupervised ranking problems.Otherwise,the attribute would be irrelevant with ranking and should be assumed to a redundant attribute.Based on the ranking mutual information,which reflects the monotonic degree between observation attributes and the order sequence,mean ranking mutual information is proposed to measure the monotonicity between observation attributes.The most relevant attributes should be with the biggest ranking mutual information.
作者 李纯果 张春琴 李海峰 LI Chunguo;ZHANG Chunqin;LI Haifeng(College of Mathematics and Information Science,Hebei University,Baoding 071002,China;Hebei Key Laboratory of Machine Learning and Computational Intelligence,Baoding 071002,China;Department of Computer Teaching,Hebei University,Baoding 071002,China)
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2020年第2期200-204,共5页 Journal of Hebei University(Natural Science Edition)
基金 国家自然科学基金资助项目(61573348) 河北省教育厅资助项目(ZC2016157)。
关键词 无监督排序 特征选择 排序互信息 unsupervised ranking feature selection ranking mutual information
  • 相关文献

参考文献3

二级参考文献30

  • 1袁著祉,陈增强,李翔.联接主义智能控制综述[J].自动化学报,2002,28(S1):38-59. 被引量:3
  • 2薛福珍,柏洁.基于先验知识和神经网络的非线性建模与预测控制[J].系统仿真学报,2004,16(5):1057-1059. 被引量:14
  • 3王珏,袁小红,石纯一,郝继刚.关于知识表示的讨论[J].计算机学报,1995,18(3):212-224. 被引量:54
  • 4HAYKIN S. Neural Networks: A comprehensive foundation[M]. 2nd ed. New York: Prentice-Hall, 1999.
  • 5BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1):1 -127.
  • 6HINTON G E, MCCLELLAND J L, RUMELHART D E. Distributed Representations[M]. Cambridge: MIT Press, 1986.
  • 7HINTON G E, OSINDERO S. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18:1527 - 1554.
  • 8HUBEL D, WIESEL T. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex[J]. Journal of Physiology, 1962, 160 : 106 - 154.
  • 9LECUNY, KAVUKCUOGLUK, FARABET C. Convolutional networks and applications in vision[Z]. International Symposium on Circuits and Systems, Paris, 2010.
  • 10LASERSON J. From neural networks to deep learning: zeroing in on the human brain [J]. XRDS, 2011, 18(1) :29 -34.

共引文献44

同被引文献41

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部