期刊文献+

基于并行残差卷积神经网络的多种树叶分类 被引量:3

Multiple types of leaves′ classification based on parallel residual convolution neural network
下载PDF
导出
摘要 树叶分类识别对于鉴定新的或者稀缺树种至关重要,采用卷积神经网络算法可以实现对树叶图像特征的自动提取,减少繁琐的人工成本,实现使用人工智能的方法来分类树叶。实验采用一种并行残差卷积神经网络和一种加入残差学习的传统Alexnet网络在制作的30种分类树叶的数据集上测试效果并作对比。以上两种方式分别比传统Alexnet网络提高了15.36%和9.36%,而且使网络更轻量化,最高准确率为90.67%,为树种识别研究提供了有效的分类方法。 The leaf classification and identification are of great importance for identifying new or scarce tree species. The convolution neural network algorithm can be used to automatically extract leaf image features,reduce fussy labor costs and classify leaves with the artificial intelligence method. In the experiment,a parallel residual convolution neural network and a traditional Alexnet network with residual learning are used to test the 30 kinds of classified leaves in the produced data set,and the testing effects of the two networks are contrasted. The accuracy obtained with the above two methods are respectively 15.36% and 9.36% higher than that obtained with the traditional Alexnet network,and the highest accuracy reaches 90.67%,which makes the network lightweight. Therefore,it provides an effective classification method for the research on tree species identification.
作者 魏书伟 曾上游 周悦 王新娇 WEI Shuwei;ZENG Shangyou;ZHOU Yue;WANG Xinjiao(College of Electronic Engineering,Guangxi Normal University,Guilin 541004,China)
出处 《现代电子技术》 北大核心 2020年第9期96-100,共5页 Modern Electronics Technique
基金 国家自然科学基金资助项目(11465004) 广西研究生教育创新计划项目(XYCSZ2019073)。
关键词 树叶分类 卷积神经网络 残差学习 图像特征提取 批量归一化 测试效果对比 leaf classification convolutional neural network residual learning image feature extraction batch normalization testing effect contrast
  • 相关文献

参考文献1

二级参考文献27

  • 1DU J X, WANG X F, ZHANG G J, et al. Leaf shape based on plant species recognition [ J]. Applied Mathematics and Computa- tion, 2007, 185(2) : 883 -893.
  • 2DALIRI M R, TORR V. Robust symbolic representation for shape recognition and retrieval [ J]. Pattern Recognition, 2008, 41 (5) : 1782 - 1798.
  • 3SINGH K, GUPTA I, GUPTA S. SVM-BDT PNN and Fourier mo- ment technique for classification of leaf shape [ J]. International Journal of Signal Processing, 2010, 3(4): 67-78.
  • 4SIXTA T. Image and video-based recognition of natural objects [ D]. Prague: Czech Technical University, 2011.
  • 5ROSSATYO D R, CASANOVA D, KOLB R M, et al. Fractal anal- ysis of leaf-texture properties as a tool for taxonomic and identifica- tion purposes: a case study with mataceae ( Mi-conieae tribe) [ J] 2011, 291(1): 103-116. species from Neotropical Melasto- Plant Systematics and Evolution,.
  • 6TEIXEIRA P R F, AWRUCH A M. Numerical simulation of fluid- structure interaction using the finite element method [ J]. Computers and Fluids, 2005, 34(2): 249-273.
  • 7CHOI J Y, ROY M, PLATANIOTIS K N. Color local texture fea- tures for color face recognition [ J]. IEEE Transactions on Image Processing, 2012, 21(3): 1366-1380.
  • 8HASSAN M, CHAUDHRY A, KHAN A, et al. Carotid artery im- age segmentation using modified spatial fuzzy c-means and ensem- ble clustering [ J]. Computer Methods and Programs in Biomedi- cine, 2012, 108(3): 1261-1276.
  • 9LV X W, BAI C G, QIU G B, et al. Relationship between texture features and mineralogy phases in iron ore sinter based on gray-lev- matrix [ J]. The Iron and Steel Institute of Japan International, 2009, 49(5): 709-718.
  • 10LIN W, JAY-KUO C C. Perceptual visual quality metrics: a sur- vey [ J]. Journal of Visual Communication and Image Representa- tion, 2011, 22(4): 297-312.

共引文献24

同被引文献34

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部