期刊文献+

基于城市居民峰谷电价响应特性的超短期负荷预测研究 被引量:2

Research on Ultra Short Term Load Forecasting Based on Response Characteristics of Urban Resident Under the Peak-valley Electricity Price
下载PDF
导出
摘要 由于峰谷电价的逐步实施,电价对用户负荷特性的影响也逐渐凸显,而当前进行负荷预测时,未考虑峰谷电价变化影响,电价变化点附近的负荷预测精度相对较低。采用电价变化点负荷增长率作为描述居民峰谷电价响应特性指标,研究了城市居民峰谷电价响应特性,并进一步分析了负荷增长率的时域特性。在此基础上,用负荷增长率修正人工神经网络预测模型来考虑峰谷电价的影响作用,对响应峰谷电价敏感的时段进行了超短期负荷预测。研究结果表明,用电价变化点负荷增长率考虑峰谷电价影响可以提高电价变化后超短期负荷预测的精度。 Due to the gradual implementation of peak and valley electricity price,the impact of electricity price on the load characteristics of users is also gradually prominent.Currently,load forecasting has not taken the impact of peak and valley electricity price change into consideration.The accuracy of load forecasting near the change point of electricity price is relatively low.In this research,the load growth rate at the change point of electricity price is used as the index to describe the response characteristics of residential peak and valley electricity price for understanding response characteristics of urban residential peak and valley electricity price.The time-domain characteristics of load growth rate are further analyzed.On this basis,the load growth rate is used to modify the artificial neural network forecasting model to consider the impact of peak and valley price and the ultra-short term load forecasting is carried out in response to the sensitive period of peak and valley price.The results show that the accuracy of ultra-short term load forecasting can be improved by considering the peak valley price effect with the load growth rate at the price change point.
作者 林启开 王珂 陈文学 盛兆乐 LIN Qikai;WANG Ke;CHEN Wenxue;SHENG Zhaole(State Grid Shandong Electric Power Maintenance Company,Jinan 250118,China;Nanjing Branch of China Electric Power Research Institute,Nanjing 210003,China)
出处 《山东电力技术》 2020年第4期5-9,共5页 Shandong Electric Power
基金 国家自然科学基金项目“大型供电节点负荷构成辨识及市场响应聚合建模研究”(51807181)。
关键词 峰谷电价 负荷增长率 时域特性 超短期负荷预测 time-of-use price load growth rate time-domain characteristic ultra short term load forecasting
  • 相关文献

参考文献4

二级参考文献57

共引文献204

同被引文献30

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部