期刊文献+

改进型协同过滤的图书推荐算法 被引量:7

A Book Recommendation Algorithm Based on Improved Collaborative Filtering
下载PDF
导出
摘要 针对用户从海量图书中选择喜欢图书较难的问题,提出一种基于图书属性分组的改进协同过滤算法。该算法首先根据用户喜欢的图书类型去选择相似用户,缩小数据集,再根据基于用户的协同过滤算法寻找最近邻居集合,然后根据项目推荐值的方法向用户推荐感兴趣的图书序列。实验结果表明:在同一数据量下,该算法在推荐数据量以及覆盖率方面均优于同类算法。 In order to solve the problem that users are difficult to select their favorite books from a large number of books, a collaborative filtering algorithm based on book attribute grouping is proposed. The method first selects similar users according to the type of books users like, then reduces the data set, and then finds the nearest neighbor set according to the collaborative filtering algorithm based on users. Then according to the project recommended value method to recommend the user interested in the sequence of books. The experimental results show that the proposed algorithm is superior to the same algorithm in the recommended data volume and the accuracy under the same data volume. The algorithm improves the user satisfaction.
作者 王维 高伊腾 周国栋 李云云 唐宁 孙媛媛 WANG Wei;GAO Yiteng;ZHOU Guodong;LI Yunyun;TANG Ning;SUN Yuanyuan(Department of Computer Science,Xianyang Normal University,Xianyang,Shanxi 712000,China)
出处 《微型电脑应用》 2020年第4期66-69,共4页 Microcomputer Applications
基金 国家级大学生创新创业训练项目(201610722026) 陕西省大学生创新创业训练项目(201828048) 陕西省教育科学“十三五”规划项目(SGH17H189) 咸阳师范学院“青年骨干教师”培养项目(XSYGG201718) 咸阳师范学院专项科研基金项目(15XSYK044)。
关键词 协同过滤 用户分组 用户相似度 collaborative filtering user packet user similarity
  • 相关文献

参考文献5

二级参考文献40

  • 1戴媛,姚飞.基于网络舆情安全的信息挖掘及评估指标体系研究[J].情报理论与实践,2008,31(6):873-876. 被引量:76
  • 2沈云斐,沈国强,蒋丽华,覃征.基于时效性的Web页面个性化推荐模型的研究[J].计算机工程,2006,32(13):80-81. 被引量:6
  • 3罗奇,余英,赵呈领,曹艳.自适应推荐算法在电子超市个性化服务系统中的应用研究[J].通信学报,2006,27(11):183-186. 被引量:12
  • 4吴颜,沈洁,顾天竺,陈晓红,李慧,张舒.协同过滤推荐系统中数据稀疏问题的解决[J].计算机应用研究,2007,24(6):94-97. 被引量:51
  • 5J Breese, D Hecherman, C Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In: Proc of the 14th Conf on Uncertainty in Artificial Intelligence (UAI98) . San Francisco,CA: Morgan Kaufmann, 1998. 43~52
  • 6B Sarwar, G Karypis, J Konstan, et al. Item-based collaborative filtering recommendation algorithms. In: Proc of the 10th Int'l World Wide Web Conf. New York: ACM Press, 2001. 285~295
  • 7A Dempster, N Laird, D Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, 39(1): 1~38
  • 8B Thiesson, C Meek, D Chickering, et al. Learning mixture of DAG models. Microsoft Research, Tech Rep: MSR-TR-97-30,1997
  • 9B Sarwar, G Karypis, J Konstan, et al. Analysis of recommendation algorithms for E-commerce. In: Proc of the 2nd ACM Conf on Electronic Commerce. New York: ACM Press,2000. 158~167
  • 10J Wolf, C Aggarwal, K-L Wu, et al. Horting hatches an egg: A new graph-theoretic approach to collaborative filtering. In: Proc of the 5th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. New York: ACM Press, 1999. 201~212

共引文献285

同被引文献35

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部