期刊文献+

引入评分偏置的二项矩阵分解推荐算法 被引量:3

Binomial matrix factorization with rating drift for recommender systems
下载PDF
导出
摘要 针对推荐系统中的评分预测问题,在矩阵分解的基础上实现了一种修正的二项矩阵分解算法。假设用户对物品的评分基于二项分布,由于用户的评分习惯存在差异,物品的受欢迎程度也存在差异,导致用户-物品评分矩阵存在偏置量。通过引入偏置量对矩阵分解和评分预测进行修正,采用最大后验估计建模,并通过随机梯度下降算法优化模型。实验结果表明,在MovieLens 100K数据集上,引入评分偏置的二项矩阵分解算法在推荐精度、离线计算时间等方面均优于传统的二项矩阵分解算法。 Based on matrix factorization techniques,this paper implemented a modified binomial matrix decomposition algorithm in order to solve the recommender system’s rating prediction problem.It supposed that the user’s rating of the item was based on the binomial distribution.There were differences in the user’s rating habits,popularity of the items,it would result in an offset in the user-item scoring matrix.This paper used the maximum a posteriori estimate to design model and optimized the model by a stochastic gradient descent algorithm.The experimental results show that the modified binomial matrix decomposition algorithm is superior to the traditional binomial matrix decomposition algorithm in terms of recommender accuracy and offline calculation time on the MovieLens 100 K datasets.
作者 张笑虹 张奇志 周亚丽 Zhang Xiaohong;Zhang Qizhi;Zhou Yali(School of Automation,Beijing Information Science&Technology University,Beijing 100192,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第5期1303-1305,1316,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(11672044,11172047)。
关键词 推荐系统 二项矩阵分解 评分偏置 recommender system binomial matrix factorization rating drift
  • 相关文献

参考文献4

二级参考文献24

  • 1项亮.推荐系统实战[M].北京:人民邮电出版社,2012.
  • 2Su Xiao-yuan, Taghi M K. A Survey of Collaborative Filtering Techniques[J]. Advances in Artificial Intelligence, 2009 ( 1 ) : 1-19.
  • 3Fidel C, V'ictor C, Diego F, et al. Comparison of Collaborative Filtering Algorithms: Limitations o{ Current Techniques and Proposals for Scalable, High-Performance Recommender Sys- temsD2. ACM Transactions on the Web, 2011,5 ( 1 ) : 2 33.
  • 4Park S T, Chu W. Pairwise preference regression for cold-start recommendation[C] // Proceedings of the Third ACM Confer- ence on Recommender Systems. ACM, 2009:21-28.
  • 5Qiu T, Chen G, Zhang Z K, et al. An itemoriented recommenda tion algorithm on cold-start problem[J]. EPL(Europhysics Let- ters), 2011,95(5).
  • 6Sahebi S, Cohen W W. Community-based recommendations: a solution to the cold start problem[C] // Workshop on Recom- mender Systems and the Social Web(RSWEB). 2011.
  • 7Konstas I, Stathopoulos V, Jose J M. On social networks and collaborative recommendation[C]//Proceedings of the 32nd In- ternational ACM SIGIR Conference on Research and Develop- ment in Information Retrieval. ACM, 2009 : 195-202.
  • 8Zhou T,Ren J, Medo M, et al. Bipartite network projection and personal reeommendation[J]. Physical Review E, 2007,76 (4).
  • 9Zhang Li, Teng Pi-qiang, Qin Tao. Using Key Users of Social Network to Solve Cold Start Problem in Collaborative Recom- mendation Systems[J]. Information Technology Journal, 2013, 12(22).
  • 10Boumaza A,Brun A. From neighbors to global neighbors in col laborative filtering: an evolutionary optimization approach[C]// Proceedings of the Fourteenth International Conference on Ge- netic and Evolutionary Computation Conference. ACM, 2012: 345-352.

共引文献430

同被引文献24

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部