期刊文献+

基于学者社交网络的论文与项目关联模型 被引量:3

Association model of paper and project based on scholar social network
下载PDF
导出
摘要 针对学者社交网络的独特用户,提出一种基于学者社交网络的论文与项目数据的协同关联模型。首先采用两步特征选择方法预处理数据,去除无关和冗余特征,得到影响论文与项目关联的有效特征;然后通过文本向量空间模型TVSM(text vector space model)计算论文与项目之间的文本相似度,为不同的论文/项目形成推荐集合。通过面向科研人员的社交网络(学者网)数据,实现模型并真实应用于学者网。在线应用情况和用户反馈表明,该模型具有较好的准确性和实用性,可更加充分地挖掘论文与项目之间蕴涵的丰富信息,给用户提供更加高效方便的学术科研管理服务,为分析学术大数据提出了新颖的研究方法。 Considering the unique users of scholars’social networks,this paper proposed a collaborative association model of paper and project data based on scholars’social networks.Firstly,the proposed model used the two-step feature selection method to preprocess the data,removed the irrelevant and redundant features and obtained the effective features that affected the association between the paper and the project.Then it would adopt/TVSM to calculate the text similarity between the paper for researchers,the model was implemented and applied to SCHOLAT.The online application situation and user feedback show that the model has good accuracy and practicability.Furthermore,it can more fully explore the potential relationship between the paper and the project,provide users with better academic research management services,and propose a novel research method for analyzing the academic big data.
作者 王柳 汤庸 杨佐希 傅城州 毛承洁 毛超丹 Wang Liu;Tang Yong;Yang Zuoxi;Fu Chengzhou;Mao Chengjie;Mao Chaodan(School of Computer Science,South China Normal University,Guangzhou 510631,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第5期1428-1431,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(U1811263,61772211) 广东省科技计划项目(2017A040405057,2016B010124008)。
关键词 社交网络 协同关联模型 特征选择 文本相似度 学者网 social network collaborative association model feature selection text similarity SCHOLAT
  • 相关文献

参考文献7

二级参考文献73

  • 1邓赵红,王士同,吴锡生,胡德文.鲁棒的极大熵聚类算法RMEC及其例外点标识[J].中国工程科学,2004,6(9):38-45. 被引量:12
  • 2王熙照,安素芳.基于极大模糊熵原理的模糊产生式规则中的权重获取方法研究[J].计算机研究与发展,2006,43(4):673-678. 被引量:7
  • 3Kohavi R, Sommerfield D, Dougherty J. Wrapper for feature subset selection [J]. Artificial Intelligence, 1997, 97 (1/2/ 3): 273-324.
  • 4Lee C, Landgrebe D. A. Feature extraction based on decision boundaries[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993, 15(4) : 388-400.
  • 5Peng Hanchuan, Long Fuhui, Ding Chris. Feature selection based on mutual information: Criteria of max-depenedency, max-relevance, and rain-redundancy [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (8) : 1226-1238.
  • 6Kira K, Rendell L A. A practical approach to feature selection [C]//Proc of the 9th Int Workshop on Machine Learning. San Francisco: Morgan Kaufmann, 1992:249-256.
  • 7Kononenko I. Estimating attributes: Analysis and extensions of RELIEF [C]//Proc of European Conf on Machine Learning. Berlin: Springer, 1994:171-182.
  • 8Robnik M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF [J]. Machine Learning, 2003, 53(1/2) : 23-69.
  • 9Sun Yijun. herative RELIEF for feature weighting: Algorithms, theories, and applications [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29 (6) : 1035-1051.
  • 10Gilad-Bachrach R, Navot A, Tishby N. Margin based feature selection-Theory and algorithms [C] //Proc of the 21st Int Conf on Machine Learning. New York: ACM, 2004, 337-344.

共引文献300

同被引文献35

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部