摘要
目前没有能够使用简单网络结构生成高质量特定图像的生成模型,针对这一项任务,结合边界平衡生成对抗网络(boundary equilibrium generative adversarial network,BEGAN)的优点,添加附加条件特征以及均方误差损失,建立了条件边界平衡生成对抗网络(conditional-BEGAN,C-BEGAN),使用这种方法提取其中的生成模型用于特定图像的生成,实验结果表明,该方法相比于其他监督类生成模型可以使用更简单的网络达到更快的收敛速度,并且能够生成具有更好质量以及多样性的图片。
At present,there is no generation model that can use simple network structure to generate high-quality specific images.For this task,this paper established the conditional boundary equilibrium generative adversarial network by combining the advantages BEGAN and adding additional condition features and the MSE loss.It used this method to extract the generation model for specific image generation.Experimental results show that compared with other supervised class generation models,this method can use simpler networks to achieve faster convergence speed and generate images with better quality and diversity.
作者
王硕诚
苟刚
葛梦园
Wang Shuocheng;Gou Gang;Ge Mengyuan(College of Computer Science&Technology,Guizhou University,Guizhou 550000,China)
出处
《计算机应用研究》
CSCD
北大核心
2020年第5期1514-1517,1535,共5页
Application Research of Computers
基金
国家自然科学基金资助项目(61562009)。
关键词
生成对抗网络
条件特征
边界平衡
图像生成
generative adversarial network(GAN)
condition features
boundary equilibrium
image generation