摘要
针对跨工序的生产与配送协同调度问题,构建了前工序单机批加工、后工序多产线逐订单加工,且工序之间采用自动引导车循环配送的协同调度模型。以最小化最大完工时间和后工序前的在制品等待时间为调度目标,设计了融合模拟退火算法与解串算法的混合离散蝙蝠算法,与改进的离散粒子群算法和Ullrich遗传算法相比,该算法能很好地减少后工序产线前的队列等待时间,缩短产品的生产周期。
Aiming at the problem of collaborative scheduling of production and distribution across processes,a collaborative scheduling model of single-machine batch processing in former process and order-by-order processing in latter process was constructed,and AGV circular distribution was adopted among the processes.A hybrid discrete bat algorithm,which is combined with simulated annealing algorithm and modified unstring and string algorithm,was designed to minimize the maximum completion time and waiting time before subsequent process.Compared with the improved discrete particle swarm optimization and Ullrich genetic algorithm,the proposed algorithm may reduce queue waiting time and production cycle of products.
作者
鲁建厦
李晋青
汤洪涛
LU Jiansha;LI Jinqing;TANG Hongtao(College of Mechanical Engineering,Zhejiang University of Technology,Hangzhou,310023;Zhejiang Huizhi Logistics Equipment Technology Co.,Ltd.,Huzhou,Zhejiang,313028)
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2020年第6期731-739,共9页
China Mechanical Engineering
基金
国家重点研发计划资助项目(2018YFB1308100)
浙江省重点研发计划资助项目(2018C01003)
特种装备制造与先进加工技术教育部/浙江省重点实验室开放基金资助项目(EM201720104)。
关键词
协同调度
跨工序
混合离散蝙蝠算法
自动引导车
coordinated scheduling
cross process
hybrid discrete bat algorithm
automated guided vehicle(AGV)