期刊文献+

价格随机条件下的闭环供应链应急数量弹性契约 被引量:6

Emergency Quantity Flexibility Contract of Closed-loop Supply Chain under Stochastic Price
下载PDF
导出
摘要 在突发事件引起价格随机的条件下,采用数量弹性契约协调二级闭环供应链。针对价格稳定和价格随机两种市场情形,提出一种新的回收数量函数。认为回收数量应该受回收价格和期望销售量影响,而不是受回收价格和市场需求共同影响。根据新的回收数量函数建立应急数量弹性契约模型,探究闭环供应链协调的约束条件,得到废旧品最优回收价格和最优订货策略,对模型进行算例分析。研究结果表明:采用新的回收数量函数时闭环供应链拥有更高的最优订货量。当市场需求规模不断扩大时,期望需求量与期望销售量之间的差异也不断扩大,此时若以期望需求量为基础度量回收数量将会高估废旧品的真实回收数量,新的回收数量函数以期望销售量作为度量基础,能够有效克服这种缺陷。价格稳定和价格随机的突发事件下,基准数量弹性契约不能协调闭环供应链,若对批发价做出适当调整,闭环供应链能够恢复协调。 Under the condition that the emergencies cause the price to be stochastic,the quantity flexibility contract is used to coordinate the two-stage closed-loop supply chain. Referring to market situations of stable price and stochastic price,a new way of measuring the quantity of recycling is proposed. It is believed that the quantity of recycling should be affected by the recycling price and the stochastic expected sales volume,instead of being affected by the recycling price and market demand. Under the new function of recycling quantity,the quantity flexibility contract model is established respectively to explore the constraints of the closed-loop supply chain coordination. The optimal collecting price and optimal ordering strategy of the respective are obtained,and the model is numerically simulated. Results show that the closed-loop supply chain has a higher optimal order quantity when using the new function of recycling quantity. When the market demand scale continues to increase,the difference between the market expected demand and the expected sales of the product is also expanding. At this moment,if the measurement is based on the expected market demand,the actual recycling quantity of the waste product will be overestimated,but if the new function of recycling quantity measures the amount of recycling based on expected sales,this shortcoming can be effectively overcoming. Under emergencies with stable price and stochastic price respectively,the benchmark quantity flexibility contract cannot coordinate the closed-loop supply chain. But if the wholesale price is properly adjusted,the closed-loop supply chain can recover to coordination.
作者 刘崇光 刘浪 LIU Chongguang;LIU Lang(College of Business,Shanghai University of Finance and Economics,Shanghai 200433,China;School of Economics and Management,East China Jiao Tong University,Nanchang Jiangxi 330013,China)
出处 《北京理工大学学报(社会科学版)》 CSSCI 北大核心 2020年第2期50-59,共10页 Journal of Beijing Institute of Technology:Social Sciences Edition
基金 国家自然科学基金项目(71562013)。
关键词 价格随机 数量弹性契约 闭环供应链 回收数量函数 stochastic price quantity flexibility contract closed-loop supply chain function of recycling quantity
  • 相关文献

参考文献5

二级参考文献53

  • 1胡本勇,王性玉,彭其渊.供应链单向及双向期权柔性契约比较分析[J].中国管理科学,2007,15(6):92-97. 被引量:14
  • 2丁斌,邹月月.基于政企联合储备模式下的应急物资的EOQ模型[J].大连理工大学学报(社会科学版),2012,33(1):90-94. 被引量:20
  • 3储洪胜,索寒生,王京春,金以慧.竞争环境下多个风险规避销售商的供需链协调[J].清华大学学报(自然科学版),2004,44(10):1345-1347. 被引量:7
  • 4于辉,陈剑,于刚.回购契约下供应链对突发事件的协调应对[J].系统工程理论与实践,2005,25(8):38-43. 被引量:166
  • 5Lariviere M A. Supply chain contracting and coordination with stochastic demand, quantitative models for supply chain management [M]. Boston: Kluwer Academic Publishers, 1999.
  • 6Tsay A A. The quantity flexibility contract and suppliercustomer incentives [J]. Management Science, 1999, 45 (10) : 1339-1358.
  • 7Tsay A A, Lovejoy W S. Quantity flexibility contracts and supply chain performance [J]. Manufacturing and Service Operations Management, 1999, 1 (2) : 89 - 111.
  • 8Sethi S P, Yan Houmin, Zhang Hanqin. Quantity flexibility contracts: Optimal decisions with information updates [J]. Decision Sciences, 2004, 35(4): 691-712.
  • 9Karakaya S, Bakal I S S. Joint quantity flexibility for multiple products in a decentralized supply chain [J]. Computers & Industrial Engineering, 2013, 64(2) : 696 -707.
  • 10Kim J S, Park S I, Shin K Y. A quantity flexibility contract model for a system with heterogeneous suppliers [J]. Computers & Operations Research, 2014, 41: 98 -108.

共引文献82

同被引文献75

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部