期刊文献+

机械臂关节空间轨迹的神经网络滑模跟踪控制 被引量:14

Manipulator joint space trajectory tracking control based on neutral network-sliding mode controller
下载PDF
导出
摘要 为了提高机械臂对给定轨迹的跟踪精度且削弱滑模控制抖振问题,提出了基于RBF神经网络滑模控制的轨迹跟踪方法。建立了多连杆机械臂系统的运动学和动力学模型。首先忽略由建模误差和系统扰动产生的系统不确定项,建立了全局PID滑模控制器,设计了由等效控制律和切换控制律组成的全局滑模控制律;而后使用单隐含层RBF神经网络逼近系统不确定项,使用神经网络对不确定项的逼近值补偿建模误差和系统扰动,达到提高控制精度的目的。经仿真验证,在机械臂初始位置误差较大的情况下,神经网络滑模控制器的调节时间、超调量、驱动力矩抖振远小于全局PID滑模控制器,证明了神经网络滑模控制器在机械臂轨迹跟踪控制中的有效性。 To improve tracking accuracy of manipulator to given trajectory and reduce chattering of sliding control,trajectory tracking method based on RBF neutral network-sliding control is proposed. Kinematics equation and dynamic equation of multiple joints manipulator system are built. Firstly,system uncertain item consisting of model error and system disturbance are neglected,and global PID sliding mode controller is built. Besides,global sliding mode control law consisting of equivalent control law and switching control law is designed. Single hidden layer RBF neutral network is used to approach system uncertain item,and approaching value is used to compensate model error and system disturbance to improve tracking accuracy. Clarified by simulation,in the case of big initial error,setting time,overshoot and driving moment of neutral network-sliding mode controller are far less than global PID sliding mode controller,which can prove validity of neutral network-sliding mode controller on manipulator trajectory tracking control.
作者 裴红蕾 PEI Honglei(Wuxi Vocational Institute of Arts&Technology,Yixing 214200,CHN)
出处 《制造技术与机床》 北大核心 2020年第5期43-48,共6页 Manufacturing Technology & Machine Tool
基金 2019年大学生创新创业训练计划项目(201913749034Y) 宜兴市社会发展类科技项目(2019SF08)。
关键词 机械臂 轨迹跟踪 全局PID滑模控制器 RBF神经网络 manipulator trajectory tracking global PID sliding mode controller RBF neutral network
  • 相关文献

参考文献8

二级参考文献70

  • 1谭福生,葛景国.力控制技术在机器人打磨中的应用及系统实现[J].上海电气技术,2008,1(2):35-40. 被引量:24
  • 2曾志文,卢惠民,张辉,郑志强.基于模型预测控制的移动机器人轨迹跟踪[J].控制工程,2011,18(S1):80-85. 被引量:12
  • 3赵众,池上康之,中村政俊.基于非线性分离模型的预测控制及其应用[J].山东大学学报(工学版),2005,35(3):58-62. 被引量:1
  • 4付庆华,曹玉强,韩述斌.模型预测算法在温度控制中的应用[J].山东工业大学学报,1996,26(A09):380-383. 被引量:1
  • 5GU D, HUH. Neural Predictive Control for a Car-like Mobile Robot [J]. Robotics and Autonomous Systems, 2002, 39(2) : 73-86.
  • 6KUMAR U, KUMAR N S U, SUKAVANAM N. Backstepping Backstepping Based Trajectory Tracking Based Trajec tory Tracking Control of a Four Wheeled Mobile Robot Control of a Four Wheeled Mobile Robot [J]. International Jour nal of Advanced Robotic Systems, 2011, 5(4): 403-410.
  • 7ILYAS EKER. Sliding Mode Control with PID Sliding Surface and Experimental Application to an Electromechanical Plant [J]. ISATrans, 2006, 45(1): 109-118.
  • 8CHUNG S C Y, LIN C L. A Transformed Lure Problem for Sliding Mode Controi and Chattering Reduction [J], IEEE Transaction on Automatic Control, 1999, 44(3): 563-568.
  • 9LIN F J, HUANG P K, CHOU W D. Recurrent-Fuzzy-Neural-Network-Controlled Linear Induction Motor Servo Drive Using Genetic Algorithms [J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1449-1461.
  • 10吴振彪.工业机器人[M].武汉:华中理工出版社,2004:6-10.

共引文献32

同被引文献165

引证文献14

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部