摘要
通过引进多个参数,构建一个第一象限内的非齐次核函数,并由此建立了具有最佳常数因子的Hilbert型不等式.通过简单的变量替换,把非齐次型的Hilbert型不等式演化为齐次型.通过对参数赋值,并借助余切函数的有理分式展开,得到最佳常数因子与余切函数高阶导数关联的Hilbert型不等式,推广了若干基本的Hilbert型不等式和一些经典结果.
By introducing several parameters,a non-homogeneous kernel function in the first quadrant was constructed,and the corresponding Hilbert-type inequality with the optimal constant factor established.By means of simple variable substitution,the non-homogeneous Hilbert-type inequality was transformed into a homogeneous type.By specifying parameters and using the rational fraction expansion of the cotangent function,the Hilbert-type inequalities with the optimal constant factor related to the higher derivative of the cotangent function were obtained,which generalizes some basic Hilbert type inequalities and some classical results.
作者
有名辉
YOU Minghui(Mathematics Teaching and Research Section,Zhejiang Institute of Mechanical and Electrical Engineering,Hangzhou,Zhejiang 310053)
出处
《绍兴文理学院学报》
2020年第4期62-67,106,共7页
Journal of Shaoxing University