期刊文献+

基于集成学习的云平台异常点检测 被引量:11

Cloud platform anomaly detection based on ensemble learning
下载PDF
导出
摘要 为提高云平台异常点检测的精度,解决单一检测系统误报率与漏报率高的问题,提出基于集成学习的异常点检测系统。为解决异常检测对象多样性的问题,构造监测序列的特征矩阵,采用自组织映射神经网络对监测序列进行聚类;对监测序列进行过采样,解决异常发生频率很低的问题;对异构的异常点检测器进行基于委员会的学习,集成各检测器的检测优点,提高检测的精度。通过带有标注的监测序列对异常点检测系统进行验证,结果表明,该系统效果优于单一检测系统,验证了设计的有效性。 To improve the accuracy of cloud platform anomaly detection and solve the problem of high false alarm rate and false negative rate of single detection system,an anomaly detection system based on ensemble learning was proposed.The monitoring sequence similarity matrix was constructed,and the self-organizing map neural network was used to cluster the monitoring sequences,which solved the problem of the diversity of the anomaly detection objects.The data were oversampled to solve the problem of low frequency of anomaly.The heterogeneous detection model integrated learning was used to improve the accuracy of anomaly detection.The anomaly detection system was verified by using the labeled monitoring sequence.The results show that the proposed system is better than the single detection system,which verifies the effectiveness of the design.
作者 王智远 陈榕 任崇广 WANG Zhi-yuan;CHEN Rong;REN Chong-guang(College of Computer Science and Technology,Shandong University of Technology,Zibo 255000,China)
出处 《计算机工程与设计》 北大核心 2020年第5期1288-1294,共7页 Computer Engineering and Design
基金 山东省自然科学基金项目(ZR2017LF004) 国家自然科学基金项目(31500669)。
关键词 异常点检测系统 闭环 聚类 特征构建 集成学习 anomaly detection system closed loop clustering feature building ensemble learning
  • 相关文献

参考文献10

二级参考文献50

  • 1卢红.电导率法测定水样中溶解性总固体[J].中国卫生检验杂志,2005,15(12):1524-1525. 被引量:10
  • 2闫伟,张浩,陆剑峰.一种离群数据挖掘新方法的研究与应用[J].控制与决策,2006,21(5):563-566. 被引量:5
  • 3肖辉,龚薇.基于可达邻域的异常检测算法[J].计算机工程,2007,33(17):74-76. 被引量:4
  • 4Ding Jie, Wang Lei, Shen DEan, et al. An anomaly detection system on big data[ J]. Natural Science Journal of Hainan University, 2015(1).
  • 5KDD Cup99 [ EB/OL]. http ://kdd. its. uci. edu/.
  • 6Kriegel H P, Schubert M, Zimek A. Angle-based outlier detection in high-dimensional data[ C ]//Proe of the 14th ACM SiGKDD Interna- tional Conference on Knowledge Discovery and Data Mining. 2008: 444-452.
  • 7Kim G, Lee S, Kim S. A novel hybrid intrusion detection method in- tegrating anomaly detection with misuse detection [ J ]. Expert Sys- tems with Applications, 2014, 41 (4) :1690-1700.
  • 8Feldman D, Schmidt M, Sohler C. Turning big data into tiny data: constant-size coresets for K-means, PCA and projective clustering [ C]// Procs of the 24th Annum ACM-SIAM Symposium on Discrete Algorithms. New York : ACM Press, 2013 : 1434-1453.
  • 9Yu Li, Lan Zhiling. A scalable, non-parametric anomaly detection framework for Hadoop [ C ]// Proc of ACM Cloud and Autonomic Computing Conference. New York: ACM Press, 2013.
  • 10Hart Jiawei, Kamber M, Pei Jian. Data mining: concepts and tech- niques [ M]. 3rd ed. San Francisco: Morgan Kanfmann, 2011.

共引文献158

同被引文献107

引证文献11

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部