期刊文献+

基于超像素的高分遥感影像分割算法 被引量:3

High-resolution remote sensing image segmentation algorithm based on superpixel
下载PDF
导出
摘要 针对高分遥感影像中存在地物数目多,特征信息复杂导致分割边缘不清晰、对象细节丢失等问题,提出一种改进的超像素分割和多特征结合的遥感影像分割合并算法。在对图像进行分割前的预处理阶段,使用超像素分割技术得到初始分割图像;区域合并过程中,基于对象间的异质性和对象内部的同质性,结合光谱、纹理和形状特征,对对象进行合并;通过调整全局分割参数来调整合并尺度,得到最终的影像分割结果。实验结果表明,所提方法能得到较好的影像分割效果。 For the high score remote sensing image,there are many features,and the feature information is complicated,resulting in unclear edge and loss of object details.An improved superpixel segmentation and multi-feature combination remote sen-sing image segmentation and merging algorithm was proposed.In the pre-processing stage,the initial segmentation image was obtained using the superpixel segmentation technique.In the process of region merging,objects were merged based on the hete-rogeneity between objects and the homogeneity within the object,combined with spectral,texture and shape features.The merged scale was adjusted by adjusting the global segmentation parameters to obtain the final image segmentation result.Experimental results show that the proposed method can get better image segmentation effects.
作者 向泽君 蔡怤晟 楚恒 黄磊 XIANG Ze-jun;CAI Fu-sheng;CHU Heng;HUANG Lei(School of Telecommunication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Key Laboratory of Optical Communication and Network in Chongqing,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Key Laboratory of Ubiquitous Sensing and Networking in Chongqing,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Chongqing Urban Planning Bureau,Chongqing 401121,China;Chongqing Survey Institute,Chongqing 400020,China)
出处 《计算机工程与设计》 北大核心 2020年第5期1379-1384,共6页 Computer Engineering and Design
基金 重庆高校创新团队建设计划基金项目(CXTDX201601020)。
关键词 多特征 超像素 异质性 合并策略 影像分割 multi-features superpixel heterogeneity merging strategy image segmentation
  • 相关文献

参考文献8

二级参考文献84

  • 1明冬萍,王群,杨建宇.遥感影像空间尺度特性与最佳空间分辨率选择[J].遥感学报,2008,12(4):529-537. 被引量:67
  • 2苏金玲,王朝晖.基于Graph Cut和超像素的自然场景显著对象分割方法[J].苏州大学学报(自然科学版),2012,28(2):27-33. 被引量:7
  • 3Ren X, Malik J. Learning a classification model for segmentation [ C]//Proceedings of the IEEE International Conference on Com- puter Vision. Washington DC, USA: IEEE, 2003: 10-17. [ DOI: 10. 1109/ICCV. 2003. 1238308 ].
  • 4Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34 ( 11 ) : 2274-2282. [DOI: 10. 1109/TPAMI. 2012. 120].
  • 5Xu C, Corso J J. Evaluation of super-voxel methods for early vid- eo processing[ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE, 2012 : 1202-1209. [DOI : 10. 1109/CVPR. 2012. 6247802 ].
  • 6Shi J, Malik ./. Normalized cuts and image segmentation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. [DOI: 10. 1109/34. 868688].
  • 7Moore A P, Prince S, Warrell J, et al. Superpixel lattices[ C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC, USA : IEEE, 2008 : 1-8. [ DOI: 10. 1109/CVPR. 2008. 4587471 ].
  • 8Veksler O, Boykov Y, Mehrani P. Superpixels and supervoxels in an energy optimization framework [ M ]//Computer Vision-EC- CV 2010. Berlin Heidelberg: Springer, 2010: 211-224. [DOI: 10. 1007/978-3-642-15555-0_16 ].
  • 9Achanta R, Shaji A, Smith K, et al. Slic superpixels[ R]. Lau- sanne, Vaud, Switzerland: Swiss federal Institute of Technology, 2010.
  • 10Liu M Y, Tuzel O, Ramalingam S, et al. Entropy rate superpixel segmentation[ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC, USA : IEEE, 2011 : 209/-2104. [DOI: 10. 1109/CVPR.2011. 5995323].

共引文献150

同被引文献29

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部