期刊文献+

群机器人任务分工与协同搜索方法 被引量:3

Task allocation and cooperative search of swarm robots
下载PDF
导出
摘要 群机器人执行搜索任务时,为平衡任务分工和提高协同搜索效率,提出预分工与反馈调节的双层分工方法和模拟鸟群觅食的协同搜索方法。在任务分工方面,以探测的目标强度为依据建立目标选择概率函数,使用轮盘赌确定机器人意向目标,将意向目标相同的机器人预分配为同一子群,使用反馈调节法实现分工平衡。在协调搜索方面,模拟鸟群觅食过程,提出粒子群-人工势场的搜索和避障协同控制方法。仿真结果表明,协同搜索方法能够锁定区域内所有目标,与文献[10]方法相比,任务完成平均耗时减少了17.14%,最优耗时减少了18.61%,验证了该方法在任务分工和目标搜索上的优越性。 When swarm robots were used to search targets,to balance task division and improve cooperative searching efficiency,double layer division method of pre-division and feedback regulation and cooperative searching method simulating bird swarm foraging were proposed.In the aspect of task division,on the basis of task strength,target choosing probability function was built.Robot determined intention target by roulette,and the robots processing the same intention target were allocated to the same subgroup.The subgroup was adjusted by feedback to realize task allocation balance.In the aspect of cooperate search,si-mulating bird swarm foraging behavior,searching and obstacle avoidance cooperative control method based on particle swarm-artificial potential field was put forward.It is clarified by simulation,all targets in the area can be locked using the cooperative searching method.Compared with the method in reference[10],average time-cost of task accomplishment decreases by 17.14%,and optimal time-cost decreases by 18.61%,which verify the superiority of the proposed method.
作者 刘倩 陈嶷瑛 冯艳红 LIU Qian;CHEN Yi-ying;FENG Yan-hong(School of Information Engineering,Hebei GEO University,Shijiazhuang 050031,China)
出处 《计算机工程与设计》 北大核心 2020年第5期1458-1463,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61271143)。
关键词 群机器人 任务分工 协同搜索 反馈调节 双层分工方法 swarm robot task allocation cooperate search feedback regulation double layer task allocation method
  • 相关文献

参考文献5

二级参考文献31

  • 1柳林,季秀才,郑志强.基于市场法及能力分类的多机器人任务分配方法[J].机器人,2006,28(3):337-343. 被引量:22
  • 2肖潇,方勇纯,贺锋,马博军.未知环境下移动机器人自主搜索技术研究[J].机器人,2007,29(3):224-229. 被引量:14
  • 3原魁,李园,房立新.多移动机器人系统研究发展近况[J].自动化学报,2007,33(8):785-794. 被引量:73
  • 4Brambilla M,Ferrante E,Birattari M. Swarm robotics:A review from the swarm engineering perspective[J].Swarm Intelligence,2013,(01):1-41.
  • 5Barca J,Sekercioglu Y. Swarm robotics reviewed[J].{H}ROBOTICA,2013,(03):345-359.
  • 6Pugh J,Martinoli A. Inspiring and modeling multi-robot search with particle swarm optimization[A].Piscataway,USA:IEEE,2007.1-5.
  • 7Doctor S,Venayagamoorthy G K,Gudise V G. Optimal PSO for collective robotic search applications[A].Piscataway,USA:IEEE,2004.
  • 8Jatmiko W,Sekiyama K,Fukuda T. A PSO-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment:Theory,simulation and measurement[J].IEEE Computational Intelligence Magazine,2007,(02):37-51.
  • 9Marjovi A,Marques L. Multi-robot olfactory search in structured environments[J].{H}Robotics and Autonomous Systems,2011,(11):867-881.
  • 10Meng Y,Gan J. Self-adaptive distributed multi-task allocation in a multi-robot system[A].Piscataway,USA:IEEE,2008.398-404.

共引文献39

同被引文献23

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部