期刊文献+

基于加权稀疏低秩组件编码的猪脸识别算法 被引量:3

Pig face recognition algorithm based on weighted sparse low-rank component coding
下载PDF
导出
摘要 针对养殖行业中动物很难适应耳标的问题,采用非入侵的识别方式进行猪脸识别,提出了基于加权稀疏低秩组件编码的猪脸识别算法.应用视网膜皮层理论与区域协方差滤波器来估计光照,并结合文中新算法提出自适应伽马校正方法对获取的反射分量进行增强,以减少光照对识别结果的影响;同时,采用训练样本中的低秩组件构建字典矩阵,并重构残差函数处理误差,以提升算法应对含有污垢图像的识别性能.在JDD2017猪脸数据集上进行了光照和面部污垢验证试验,分别统计其识别率与耗时情况.结果表明:文中所提出算法显著优于传统稀疏表示方法,具有容忍光照变化、污垢和训练耗时短的优点. To solve the problem that animals were difficult to adapt to ear tags in the breeding industry,the pig face recognition algorithm was proposed based on weighted sparse low-rank component coding by the pig face recognition in non-intrusive recognition method.The Retinex theory and the regional covariance filter were applied to estimate the illumination,and the proposed adaptive gamma correction method was used to enhance the reflection components to reduce the impact of illumination on recognition results.The low-rank components in the training samples were used to construct the dictionary matrix,and the residual function was reconstructed to process the errors and improve the recognition performance of the algorithm in dealing with the images containing dirt.The recognition rate and the time-consuming situation were calculated based on the light and facial dirt verification experiments on the JDD2017 pig face dataset.The results show that the proposed algorithm is significantly better than the traditional sparse representation method,and it has the advantages of tolerance to illumination changes and dirt with short training time.
作者 成科扬 孙家傲 毛启容 詹永照 CHENG Keyang;SUN Jiaao;MAO Qirong;ZHAN Yongzhao(School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China;Jiangsu Province Big Data Ubiquitous Perception and Intelligent Agricultural Application Engineering Research Center, Zhenjiang, Jiangsu 212013, China)
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2020年第3期314-320,共7页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(61602215,61672268) 社会安全风险感知与防控大数据应用国家工程实验室主任基金资助项目(201807)。
关键词 猪脸识别 稀疏表示分类 低秩分解 RETINEX 残差函数 pig face recognition sparse representation classification low rank matrix recovery Retinex residual function
  • 相关文献

参考文献1

二级参考文献75

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 3Gonzalez R C, Woods R E. Digital Image Processing. Read- ing, MA: Addison-Wesley, 1992.
  • 4Nayar S K, Narasimhan S G. Vision in bad weather. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999, 2:820-827.
  • 5Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254.
  • 6Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern AnMysis and Machine Intelligence, 2003, 25(6): 713-724.
  • 7Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition (CVPR 2001). Kauai: IEEE, 2001, 2: II- 186-II-193.
  • 8Hauti6re N, Tarel J P, Lavenant J, Aubert D. Automatic fog detection and estimation of visibility distance throughuse of an onboard camera. Machine Vision and Applications 2006, 17(1): 8-20.
  • 9Kim T K, Paik J K, Kang B S. Contrast enhancement sys- tem using spatially adaptive histogram equalization with temporal filtering. IEEE Transactions on Consumer Elec- tronics, 1998, 44(1): 82-87.
  • 10Stark J A. Adaptive image contrast enhancement using gen- eralizations of histogram equalization. IEEE Transactions on Image Processing, 2000, 9(5): 889-896.

共引文献213

同被引文献109

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部