期刊文献+

基于黄色诱捕板的黄曲条跳甲识别与计数方法 被引量:1

Identifying and counting phyllotreta striolata fabriciuson based on yellow sticky trap
下载PDF
导出
摘要 为了及时掌握严重危害蔬菜生长的害虫—黄曲条跳甲的发生状况及其危害程度,提出了基于黄色诱捕板的黄曲条跳甲识别与计数方法.首先,采用最大类间方差法(OTSU)获得图像的黄色诱捕板区域.在黄色诱捕板上以连通区域面积阈值获得候选区域,并对候选区采用OTSU算法、颜色平滑算法和主动轮廓模型进行目标图像分割.在此基础上,对候选区域提取颜色特征、纹理特征和几何特征,并采用支持向量机的方法,对黄曲条跳甲进行识别和计数.所提出的基于黄色诱捕板的黄曲条跳甲识别与计数方法的准确率、精确率和召回率分别为88.16%,92.00%和81.56%,达到了及时获得黄曲条跳甲灾情的目标. To grasp the occurrence of phyllotreta striolatas fabricius with serious damage to vegetable growth and the damage extent,a method for identifying and counting phyllotreta striolatas fabricius was proposed based on yellow sticky traps.The maximum inter-class variance algorithm(OTSU)algorithm was used to segment yellow sticky traps from the background images.OTSU algorithm,color smooth and active contour model were applied to segment phyllotreta striolatas fabricius from yellow sticky traps.Color feature,textural feature and shape feature of candidate areas were subsequently extracted,and support vector machine was built to identify and count the phyllotreta striolatas fabricius.The results show that the proposed method can achieve high accuracy of 88.16%,precision of 92.00%and recall of 81.56%,and the information of phyllotreta striolata fabricius can be obtained in real-time.
作者 张连宽 张程 岑冠军 高燕 ZHANG Liankuan;ZHANG Cheng;CEN Guanjun;GAO Yan(College of Mathematics and Informatics, South China Agricultural University, Guangzhou, Guangdong 510642, China;School of Information and Control Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, China;Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China)
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2020年第3期339-345,共7页 Journal of Jiangsu University:Natural Science Edition
基金 广东省重点领域研发计划项目(2019B020217003,2019B020214002)。
关键词 黄曲条跳甲 图像处理 黄色诱捕粘板 支持向量机 最大类间方差法 phyllotreta striolata fabricius image processing yellow sticky trap support vectormachine maximum inter-class variance algorithm
  • 相关文献

参考文献3

二级参考文献27

  • 1王晓城,高小榕.基于混合隐Markov模型的红细胞计数方法[J].清华大学学报(自然科学版),2004,44(6):856-859. 被引量:4
  • 2王方石,须德,吴伟鑫.基于自适应阈值的自动提取关键帧的聚类算法[J].计算机研究与发展,2005,42(10):1752-1757. 被引量:32
  • 3张建伟,王永模,沈佐锐.麦田蚜虫自动计数研究[J].农业工程学报,2006,22(9):159-162. 被引量:26
  • 4Xu C,IEEE Trans Image Processing,1998年,7卷,3期,359页
  • 5Amini A A,IEEE Transactions Medical Imaging,1998年,17卷,3期,344页
  • 6Jolly M P D,IEEE Transactions on Pattern Analysis and Machine Intelligence,1996年,18卷,3期,293页
  • 7Jain A K,IEEE Transactions Pattern Analysisand Machine Intelligence,1996年,18卷,3期,267页
  • 8Lai K F,IEEE Transactions Pattern Analysis Machine Intelligence,1995年,17卷,11期,1084页
  • 9Cohen L D,CVGIP:Image Understanding,1991年,53卷,2期,211页
  • 10Cohen L D,Proceedings of the 3rd International Conference on Computer Vision,1990年,587页

共引文献135

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部