期刊文献+

基于CNN卷积神经网络的手势识别系统 被引量:3

Gesture Recognition System Based on CNN Convolutional Neural Network
下载PDF
导出
摘要 与普通的神经网络非常相似,CNN卷积神经网络也由具有可学习的权重和偏置常量的神经元组成.每个神经元都接收一些输入并做一些点积计算,输出是每个分类的分数,普通神经网络里的一些计算技巧依旧适用.该文介绍了基于CNN卷积神经网络的手势识别系统,首先对不同的手势图片进行采集,将采集结果作为训练集和测试集,系统将会对其进行识别. Similar to ordinary neural networks,CNN convolutional neural networks are also composed of neurons with learnable weights and bias constants.Each neuron receives some input and does some point product calculation.The output is the score of each classifica tion.Some calculation techniques in the general neural network are still applicable.In this paper,a gesture recognition system Based on CNN convolution neural network is introduced.Firstly,different gesture images are collected,and the collected results are used as train ing set and test set,which will be recognized by the system.
作者 俞洋 厉丹 马一丁 姚瑶 张丽娜 YU Yang;LI Dan;MA Yi-ding;YAO Yao;ZHANG Li-na(Information and Electrical Engineering College,Xuzhou Institute of Technology,Xuzhou 221000,China)
出处 《电脑知识与技术》 2020年第10期210-212,共3页 Computer Knowledge and Technology
基金 徐州市科技计划项目(KC18011) 徐州工程学院大学生创新创业训练计划项目(xcx2019031) 江苏省教育信息化研究课题(20180071) 徐州工程学院高等教育研究课题(YGJ1916) 江苏省现代教育课题(2019-R-69623) 2018年第二批产学合作协同育人项目。
关键词 卷积神经 手势识别 深度学习 convolution nerve gesture recognition deep learning
  • 相关文献

参考文献3

二级参考文献172

  • 1Marr D.Vision:A Computational Investigation Into the Human Representation and Processing of Visual Information.Cambridge:The MIT Press,2010.
  • 2LeCun Y,Bottou L,Bengio Y,Haffner P.Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324.
  • 3Ferrari V,Jurie F,Schmid C.From images to shape models for object detection.International Journal of Computer Vision,2009,87(3):284-303.
  • 4Latecki L J,Lakamper R,Eckhardt U.Shape descriptors for non rigid shapes with a single closed contour//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Hilton Head,USA,2000,1:424-429.
  • 5Krizhevsky A.Learning Multiple Layers of Features from Tiny Images[M.S.dissertation].University of Toronto,2009.
  • 6Torralba A,Fergus R,Freeman W T.80 million tiny images:A large dataset for non-parametric object and scene recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970.
  • 7Li FebFei,Fergus R,Perona P.Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories//Proceedings of the Computer Vision and Pattern Recognition (CVPR),Workshop on Generative-Model Based Vision.Washington,USA,2004:178.
  • 8Griffin G,Holub A D,Perona P.The Caltech 256.Caltech Technical Report CNS-TR-2007-001.
  • 9Lazebnik S,Schmid C,Ponce J.Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).New York,USA,2006:2169-2178.
  • 10Li Fei-Fei,Perona P.A Bayesian hierarchical model for learning natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Washington,USA,2005:524-531.

共引文献645

同被引文献26

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部