摘要
与普通的神经网络非常相似,CNN卷积神经网络也由具有可学习的权重和偏置常量的神经元组成.每个神经元都接收一些输入并做一些点积计算,输出是每个分类的分数,普通神经网络里的一些计算技巧依旧适用.该文介绍了基于CNN卷积神经网络的手势识别系统,首先对不同的手势图片进行采集,将采集结果作为训练集和测试集,系统将会对其进行识别.
Similar to ordinary neural networks,CNN convolutional neural networks are also composed of neurons with learnable weights and bias constants.Each neuron receives some input and does some point product calculation.The output is the score of each classifica tion.Some calculation techniques in the general neural network are still applicable.In this paper,a gesture recognition system Based on CNN convolution neural network is introduced.Firstly,different gesture images are collected,and the collected results are used as train ing set and test set,which will be recognized by the system.
作者
俞洋
厉丹
马一丁
姚瑶
张丽娜
YU Yang;LI Dan;MA Yi-ding;YAO Yao;ZHANG Li-na(Information and Electrical Engineering College,Xuzhou Institute of Technology,Xuzhou 221000,China)
出处
《电脑知识与技术》
2020年第10期210-212,共3页
Computer Knowledge and Technology
基金
徐州市科技计划项目(KC18011)
徐州工程学院大学生创新创业训练计划项目(xcx2019031)
江苏省教育信息化研究课题(20180071)
徐州工程学院高等教育研究课题(YGJ1916)
江苏省现代教育课题(2019-R-69623)
2018年第二批产学合作协同育人项目。
关键词
卷积神经
手势识别
深度学习
convolution nerve
gesture recognition
deep learning