期刊文献+

炼化污泥基催化剂协同臭氧处理难降解废水的研究 被引量:1

Catalytic ozonation of refractory wastewater with biochar catalyst prepared by petrochemical waste sludge
下载PDF
导出
摘要 将炼化剩余活性污泥进行热解与碱处理,成功制备出可协同臭氧处理难降解废水的污泥基催化剂。在初始pH分别为5.8、7.0、10.0时处理硝基苯废水,与单独臭氧氧化相比,污泥基催化剂协同臭氧氧化处理的TOC去除率分别提高了34.1%、46.5%、27.9%。且在中性条件下的催化臭氧氧化处理过程中,与煤基活性炭相比,该污泥基催化剂能将TOC去除率提高15.7%。催化剂表面丰富的金属氧化物和含碳官能团构成复合活性中心,催化臭氧分解产生自由基。 The petrochemical remaining activated sludge was pyrolyzed and then treated by alkali to prepare biochar catalyst,which can be use to treat refractory wastewater under ozone condition. Under different initial pH values(p H=5.8,7.0 and 10.0),the TOC removal of nitrobenzene wastewater in catalytic ozonation increased by 34.1%,46.5%and 27.9%,respectively,compared with those by ozonation only. Furthermore,in the catalytic ozonation process,the sludge-based catalyst improved the TOC removal by 15.7% compared with coal-based activated carbon under neutral conditions. Rich metal oxides and carbon-containing functional groups on the catalyst surface constituted the composite active sites,which promoted the decomposition of ozone to produce free radicals.
作者 王郁现 刘璐 郭绍辉 陈春茂 Wang Yuxian;Liu Lu;Guo Shaohui;Chen Chunmao(State Key Laboratory of Petroleum Pollution Control,College of Chemical Engineering and Environment,China University of Petroleum-Beijing,Beijing 102249,China)
出处 《工业水处理》 CAS CSCD 北大核心 2020年第5期29-34,共6页 Industrial Water Treatment
基金 国家自然科学基金面上项目(21776307,21978324)。
关键词 炼化污泥 催化剂 臭氧氧化 硝基苯 自由基 excess activated sludge catalysts nitrobenzene ozonation free radicals
  • 相关文献

参考文献4

二级参考文献41

  • 1夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(3)[J].电池,2005,35(2):105-108. 被引量:13
  • 2曹玉春,严建华,李晓东,陈彤,岑可法.垃圾焚烧炉中二噁英生成机理的研究进展[J].热力发电,2005,34(9):15-20. 被引量:19
  • 3王万福,何银花,谢陈鑫,季红梅.含油污泥资源化技术综述[J].油气田环境保护,2006,16(3):47-49. 被引量:22
  • 4Bradder P, Ling S K, Wang S B, et al. 2010. Dye adsorption on layered graphite oxide [ J ] .Journal of Chemical & Engineering Data, 56 ( 1 ) : 138-141.
  • 5Brown J N, Peake B M. 2006. Sources of heavy metals and polycyclicaromatic hydrocarbons in urban stormwater runoff[ J] .Science of the Total Environment,359(1/3) : 145-155.
  • 6Chen T, Zeng B Q, Liu J L, et al. 2009. High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method [ J ]. Journal of Physics: Conference Series, 188 ( 1 ) : 012051.
  • 7Cben D, Feng H B, Li J H. 2012. Graphene oxide: preparation, functionalization, and electrochemical applications [ J ]. Chemical Reviews, 112( I I) : 6027-6053.
  • 8Dreyer D R, Park S, Bielawski C W, et a/.2010.The chemistry of graphene oxide [ J ]. Chemical Society Reviews, 39 ( 1 ) : 228-240.
  • 9Fan H W, Zhou L M, Jiang X H, et al. 2014. Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite[ J] .Applied Clay Science,95 : 150-158.
  • 10Gadipelli S,Guo Z X.2015.Graphene-based materials: Synthesis and gas sorption, storage and separation [ J ]. Progress in Materials Science, 69:1-60.

共引文献33

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部