期刊文献+

Wind Speed Prediction by a Hybrid Model Based on Wavelet Transform Technique

下载PDF
导出
摘要 It is difficult to predict wind speed series accurately due to the instability and randomness of the wind speed series.In order to predict wind speed,authors propose a hybrid model which combines the wavelet transform technique(WTT),the exponential smoothing(ES)method and the back propagation neural network(BPNN),and is termed as WTT-ES-BPNN.Firstly,WTT is applied to the raw wind speed series for removing the useless information.Secondly,the hybrid model integrating the ES method and the BPNN is used to forecast the de-noising data.Finally,the prediction of raw wind speed series is caught.Real data sets of daily mean wind speed in Hebei Province are used to evaluate the forecasting accuracy of the proposed model.Numerical results indicate that the WTT-ES-BPNN is an effective way to improve the accuracy of wind speed prediction.
作者 LI Shengpeng ZHANG Shun YAO Hongyu CAO Shibao ZHAO Bing 李生鹏;张顺;姚洪宇;曹士保;赵冰(State Power Grid Gansu Electric Power Company Electric Power Science Research Institute, Lanzhou 730000, China)
出处 《Journal of Donghua University(English Edition)》 EI CAS 2020年第2期150-155,共6页 东华大学学报(英文版)
  • 相关文献

参考文献2

二级参考文献7

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部