期刊文献+

基于数字均衡的时变数字语音模型更新

Model Updating of Time Variant Digital Voice Based on Digital Balanced
下载PDF
导出
摘要 人的声音会随着时间的变化而变化,例如中年男性的声音比青年时要低沉。因此一般情况下,时间的跨度与说话人识别的正确率成反比。基于模型更新的方式可以提高说话人识别系统的识别率。由于数字均衡的模型语音的发音覆盖率广,所以该文重点研究数字均衡的时变数字语音的模型更新,采用用数字均衡的模型更新方式和非数字均衡的模型更新方式和不更新的方式做对比实验,实验结果显示不固定大小特征的数字均衡的模型效果较好。 A person′s voice changes over time, for example, middle-aged men have a lower voice than they are young. In general, the time span is inversely proportional to the correct rate of the speaker recognition. So Model updating can improve the recognition rate. In the training model, in order to ensure the pronunciation of the digital equalization of the coverage rate is wide, so the paper study of digital balanced digital voice model updating. The paper compare a kind of digital balanced model updating mode with a non digital balance updating mode and non updating model, the conclusion is unsure size characteristics of digital balanced model is better.
作者 苏力 尹琦 SU Li;YIN Qi(School of Computer and Software,Huaiyin Institute of Technology,Huaian 223001,China;School of Computer Engineering,Jiangsu Ocean University,Lianyungang 222005,China)
出处 《电脑知识与技术》 2020年第7期269-271,276,共4页 Computer Knowledge and Technology
关键词 说话人识别 时变 数字均衡 speaker identification time variant digital balanced
  • 相关文献

参考文献4

二级参考文献38

  • 1包永强,赵力,邹采荣.采用归一化补偿变换的与文本无关的说话人识别[J].声学学报,2006,31(1):55-60. 被引量:13
  • 2王书诏,邱天爽.说话人识别研究综述[J].电声技术,2007,31(1):51-55. 被引量:9
  • 3[1]Ahmed Mezghani,Douglas.Speaker verification using a new representation based on a CMFCC and formants[J].IEEE Electrical and Computer Engineering,2005,22:1469-1472.
  • 4[2]Minh N Do.An automatic apeaker recognition system[J].Swiss Federal Institute of Technology,2001,6:122-124.
  • 5Kinnunen T, Li H Z. An overview of text-independent speaker recognition: from features to supervectors. Speech Communication, 2010; 52(1): 12--40.
  • 6Reynolds D A, Rose R C. Robust text-independent speaker identification using gaussian mixture models. IEEE Transactions on Speech and Audio Processing, 1995; 3(1): 72- 83.
  • 7Reynolds D A, Quatieri T F, Dunn R B. Speaker verification using adapted Gaussian mixture models. Digital Signal Processing, 2000; 10:19-41.
  • 8Sachin S K, Nicolas S, Martin G, Elizabeth S, Andreas S, Luciana F, Tobias B. The SRI NIST 2008 speaker recognition evaluation system. Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009:4205 4208.
  • 9Campbell W M, Sturim D E, Reynolds D A. Support vector machines using GMM supervectors for speaker verification. IEEE Signal Processing Letters, 2006; 13(5): 308--311.
  • 10Bilmes J A. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. Technical Report 1CSI-TR- 97-021, 1997.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部