摘要
驾驶员的违章行为是造成交通事故的主要原因之一,利用摄像头实时监控行驶过程中的驾驶员违章行为是一个减少交通事故的有效方法.本文提出一种通过深度神经网络的驾驶员违章行为识别方法.首先,利用Deep-Pose检测驾驶员身体关键点,接着,基于这些关键点提取动作特征,然后使用最近邻分类器识别典型违章行为.实验证明,本文的方法对于典型的违章行为是有效的.
Driver's illegal behavior is one of the main causes of traffic accidents.Using camera to monitor driver's illegal behavior in real time is an effective method to reduce the number of traffic accidents.This paper proposed a driver's behavior recognition meth od based on deep neural network.First,the driver’s body key points are detected by Deep-Pose method.Then,the action features are extracted based on these key points.Finally,the nearest neighbor classifier method is used to identify typical illegal behavior.Experiments show that the method is effective for typical Driver's violations.
作者
姜雨凯
周亢
李志伟
李杰
丁政年
向阳
邵叶秦
JIANG Yu-kai;ZHOU KANG;LI Zhi-wei;LI Jie;DING Zheng-nian;XIANG Yang;SHAO Ye-qin(School of Computer Science and Technology,Nantong University,Nantong 226019,China;School of Transpiration,Nantong University,Nantong 226019,China;School of Zhangjian,Nantong University,Nantong 226019,China)
出处
《电脑知识与技术》
2020年第12期198-200,共3页
Computer Knowledge and Technology
基金
江苏省大学生创新创业训练计划项目"基于车载视频的公交驾驶员和前排乘客异常行为识别"(省级重点项目)
江苏省大学生创新创业训练计划项目"基于视频的电瓶车驾驶员智能头盔系统"(校企合作)
南通大学教学改革研究课题(2017B82)
南通大学2016课程资源建设项目精品课程培育(JP16021)。