摘要
【目的/意义】为了支持高价值专利培育工作开展,面向潜在高价值专利预测的需求,提出基于随机森林算法的潜在高价值专利预测方法。【方法/过程】梳理现有研究,选择用于潜在高价值专利预测的指标,构建基于随机森林算法的潜在高价值专利预测模型。使用“语音信号识别”领域的19647条专利进行实证分析,模型预测准确率达96.01%。【结果/结论】目前适于从海量早期申请中发掘潜在高价值专利的方法研究较少,本方法能够在专利申请早期发挥作用,同时具有预测准确率高、处理数据量大、模型可解释性好的优点。
【Purpose/significance】In order to support the cultivation of high-value patents and meet the demand of the pre diction of high-value patents,a prediction method of high-value patents based on random forest algorithm was proposed.【Method/process】The indexes used for the prediction of potential high-value patents are selected and a prediction method based on Random Forest Algorithm is proposed.Empirical analysis is conducted on 19,647 patents in the field of"voice sig nal recognition",and the prediction accuracy reaches 96.01%.【Result/conclusion】At present,there are few studies on the method suitable for mining potentially high-value patents from massive early applications.This method can play a role in the early application of patents,and it has the advantages of high prediction accuracy,large amount of data processing and good model interpretability.
作者
王思培
韩涛
WANG Si-pei;HAN Tao(National Science Library,Chinese Academy of Sciences,Beijing 100190,China;Department of Library,Informaion and Archives Management,School of Economics and Management,University of Chinese Academy of Sciences,Beijing 100190,China)
出处
《情报科学》
CSSCI
北大核心
2020年第5期120-125,共6页
Information Science
关键词
随机森林
高价值专利
专利价值
价值预测
Random Forest Algorithm
high value patent
patent value
value prediction