期刊文献+

基于降低互耦影响的二维稀疏阵优化设计 被引量:1

Optimal Design of Two-Dimensional Sparse Array Based on Mutual Coupling Reduction
下载PDF
导出
摘要 通过对基于差分共阵概念的开盒阵(open box array,OBA)阵元进行重新优化,提出了一种称为稀疏H型阵的新阵型设计方案.该结构具有与OBA相同的可估计信源数,并通过降低紧密排布的传感器对数有效减小了传感器间互耦效应.基于二维酉ESPRIT算法的波达方向估计,仿真证实了所提出的阵型相较其他阵型具有更好的抗耦合能力. A new planar sparse geometry,referred to as the sparse H array was proposed by re-optimizing the sensors of open box array(OBA)based on difference co-array concept.The new structures has the same number of identifiable sources as the OBAs.It can decrease the mutual coupling effect between sensors by effectively reducing sensor pairs with closed space.Simulations of the direction-of-arrival estimation verify the better anti-coupling capability of the proposed PSAs than other geometries with the 2-D unitary ESPRIT algorithm used.
作者 罗雪 LUO Xue(School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2020年第5期531-536,共6页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(61801024)。
关键词 平面稀疏阵列 开盒阵 互耦 DOA估计 planar sparse array open box array mutual coupling DOA estimation
  • 相关文献

参考文献1

二级参考文献14

  • 1Van Derveen A J,Van Derveen M C,Paulraj A.Joint angle and delay estimation using shift-invariance techniques[J].IEEE Transactions on Signal Processing,1998,46(2):405-418.
  • 2Haardt M,Nossek J A.Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieveal problems[J].IEEE Transactions on Signal Processing,1998,46(1):161-169.
  • 3Li J,Compton R T,Jr.Two-dimensional angle and polarization estimation using the ESPRIT algorithm[J].IEEE Transaction on Antennas Propagation,1992,40(5):550-555.
  • 4Abel-Meraim K,Hua Y,Belouchrani A.Second-order nearfield souce localization:algorithm and performance analysis[C]∥Proc 30th Asilomar Conference on Signals,Systems and Computers.Pacific Grove,USA:[s.n.],1996:723-726.
  • 5Zoltowski M D,Wong K T.ESPRIT-based 2-d direction finding with a sparse uniform array of electromagnetic vector sensors[J].IEEE Transactions on Signal Processing,2000,48(8):2195-2204.
  • 6Hua Y,Abed-Meraim K.Techniques of eigenvalues estimation and association[J].Digital Signal Processing,1997,7(4):253-259.
  • 7Van Derveen A J,Ober P B,Deprettere E F.Azimuth and elevation computation in high resolution DOA estimation[J].IEEE Transactions on Signal Processing,1992,40(7):1828-1832.
  • 8Abed-Meraim K,Hua Y.A least-squares approach to joint schur decomposition[C]∥Proc IEEE ICASSP'1998.Seatle:IEEE,1998:2541-2544.
  • 9Strobach P.Bi-iteration multiple invariance subspace tracking and adaptive ESPRIT[J].IEEE Transactions on Signal Processing,2000,48(2):442-456.
  • 10Fu Tuo,Gao Xiqi.Simultaneous diagonalization with similarity transformation for non-defective matrices[C]∥Proc IEEE ICASSP'2006.Toulouse,France:IEEE,2006:1137-1140.

共引文献1

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部