期刊文献+

基于负泊松比结构的汽车B柱结构耐撞性优化设计 被引量:5

Crashworthiness optimization design of automobile B-pillar structure based on negative Poisson′s ratio structure
下载PDF
导出
摘要 为了提高汽车的侧面耐撞性,基于传统B柱基本结构,提出了一种填充负泊松比内芯的新型B柱结构.根据我国新车评价规程C-NCAP要求,建立基于新型B柱结构的整车侧面碰撞模型;采用最优拉丁超立方试验设计法采取样本点,建立B柱各评价指标与设计变量之间的响应面模型;在此基础上,以B柱侵入位移和侵入速度为优化目标,采用NSGA-Ⅱ优化算法对新型B柱结构进行多目标优化设计.结果表明:新型B柱结构使得整车侧面碰撞的侵入位移下降了7.44%,侵入速度下降了5.10%,两者都有明显降低,这显著改善了汽车的侧面耐撞性能. To improve the side crashworthiness of automobile,based on the traditional B-pillar basic structure,a new B-pillar structure with negative Poisson′s ratio inner core was proposed.According to the requirements of C-NCAP,the side impact model was established based on the new B-pillar structure.Taking sample points by the optimal Latin hypercube test design method,the response surface model between each evaluation index and design variable of B-pillar was established.On this basis,the invasion displacement and the invasion speed of B-pillar were used as optimization objective,and the NSGA-Ⅱoptimization algorithm was adopted to improve the new B-pillar structure by the multi-objective optimization design.The results show that the new B-pillar structure can reduce the invasion displacement by 7.44%with decreased invasion speed by 5.10%,which illuminates that the side crashworthiness of vehicle is significantly improved.
作者 赵万忠 赵宏宇 王春燕 ZHAO Wanzhong;ZHAO Hongyu;WANG Chunyan(College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China)
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2020年第2期166-171,共6页 Journal of Jiangsu University:Natural Science Edition
基金 汽车安全与节能国家重点实验室开放基金资助项目(KF1812)。
关键词 B柱 负泊松比结构 耐撞性 响应面模型 多目标优化 B-pillar negative Poisson′s ratio structure crashworthiness response surface model multi-objective optimization
  • 相关文献

参考文献3

二级参考文献29

  • 1傅立敏,扶原放.轿车并列行驶湍流特性的数值模拟[J].吉林大学学报(工学版),2005,35(4):358-362. 被引量:18
  • 2游国忠,陈晓东,程勇,朱西产,苏清祖.轿车B柱的优化及对侧面碰撞安全性的影响[J].汽车工程,2006,28(11):972-975. 被引量:37
  • 3Marklund P O, Nilsson L. Optimization of a Car Body Component Subjected to Side Impact [J]. Struct. Multidisciplinary Optimization, 2001,21: 383-392.
  • 4Zhu P, Shi Y L, Zhang K Z, et al. Optimum De- sign of an Automotive Inner Door Panel with a Tai-lor--welded Blank Structure[J]. Journal of Auto- mobile Engineering, 2008,222(8) : 1337-1348.
  • 5Min K B, Kim K S, Kang S S. A Study on Resist- ance Welding in Steel Sheets Using a Tailor--wel- ded Blank (lst report) Evaluation of Upset Weld- ability and Formahility[J]. Journal of Materials Processing Technology, 2000,101 : 186-192.
  • 6Shin J K, Lee K H, Song S I, et al. Automotive Door Design with the ULSAB Concept Using Structural Optimization [J]. Struct. Muhidiscipli- nary Optimization, 2002, 23:320-327.
  • 7Lee K H, Shin J K, Song S I, et al. Automotive Door Design Using Structural Optimization and De- sign of Experiments[J]. Automobile Engineering, 2003, 217(10): 855-865.
  • 8Song S I, Park G J. Multidisciplinary Optimization of an Automotive Door with a Tailored Blank[J]. Automobile Engineering, 2006, 220(2): 151-163.
  • 9Malkusson R, Karlsson P. Simulation Method for Establishing and Satisfylng Side Impact Design Re- quirements[J]. SAE Paper,98ga58.
  • 10Uduma K, Wu J P,Bilkhu S, et ah Door Interior Trim Safety Enhancement Strategies for the SID-- IIs Dummy[J]. SAE Paper,2005010284.

共引文献29

同被引文献44

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部