摘要
为了更好地应对电网突发故障,改善算法因数据量大而导致计算速度慢的问题,建立了基于电网监测数据的智能化故障研判与处置平台,利用关联规则(Apriori)算法挖掘数据间的逻辑关联性,以准确判断故障类型和发生位置,结合停电范围和电网实时运行状态,利用案例推理(CBR)算法检索历史相似故障案例,继而形成新故障处置策略,完成故障处理与恢复供电。
In order to better deal with the sudden power grid fault and improve the calculation speed of the algorithm due to the large amount of data,this paper establishes an intelligent fault diagnosis and disposal platform based on the power grid monitoring data.The Apriori algorithm is used to mine the logical correlation between datum,accurately judge the type and location of the fault,combine the power outage scope and the real-time operation status of the power grid,use case-based reasoning(CBR)algorithm to retrieve the historical similar fault cases,and then form a new fault handling strategy to complete the fault handling and power supply restoration.
作者
王文嘉
宋健
王大亮
于洪波
崔宇
WANG Wenjia;SONG Jian;WANG Daliang;YU Hongbo;CUI Yu(State Grid Changchun Power Supply Company,Changchun 130021,China;State Grid Jilin Electric Power Co.,Ltd.Information and Communication Company,Changchun 130028,China;State Grid Dandong Power Supply Company,Dandong 118000,China)
出处
《吉林电力》
2020年第2期31-35,共5页
Jilin Electric Power
关键词
智能电网
自愈能力
监测数据
关联规则算法
案例推理算法
smart power network
self-healing ability
monitoring data
Apriori algorithm
case-based reasoning algorithm